
Tetrahedral Grid Re�nementJ�urgen Bey, T�ubingenFinal Version : October 1995�Abstract { ZusammenfassungTetrahedral Grid Re�nement. We present a re�nement algorithm for unstructured tetrahedralgrids, which generates possibly highly non-uniform but nevertheless consistent (closed) and stabletriangulations. Therefore we �rst de�ne some local regular and irregular re�nement rules that areapplied to single elements. The global re�nement algorithm then describes how these local rules canbe combined and rearranged in order to ensure consistency as well as stability. It is given in a rathergeneral form and includes also grid coarsening.1991 Mathematics Subject Classi�cations: 65N50, 65N55Key words: Tetrahedral grid re�nement, stable re�nements, consistent triangulations, green closure,grid coarsening.Verfeinerung von Tetraeder-Gittern. Es wird ein Verfeinerungsalgorithmus f�ur unstrukturierteTetraeder-Gitter vorgestellt, der m�oglicherweise stark nicht-uniforme aber dennoch konsistente (d.h.geschlossene) und stabile Triangulierungen liefert. Dazu de�nieren wir zun�achst einige lokale regul�arebzw. irregul�are Verfeinerungsregeln f�ur einzelne Elemente. Der globale Verfeinerungsalgorithmusbeschreibt dann, wie diese lokalen Regeln kombiniert und umgeordnet werden k�onnen, so da� sowohlKonsistenz als auch Stabilit�at garantiert sind. Die Formulierung des globalen Algorithmus ist sehrallgemein gehalten und erlaubt auch Gitter-Vergr�oberungen.1. IntroductionThe numerical treatment of partial di�erential equations includes the solution of largesystems of equations. For three-dimensional problems, several millions of unknownsare no rarity, and { although computational power has grown exponentially duringthe last decades { many interesting real life problems could not be solved today, hadnot the development of e�cient algorithms been similarly successful.Modern applications make use of adaptive techniques to optimize the number of un-knowns by �tting the corresponding discretization to the present approximate solu-tion. For this purpose, the underlying discretization mesh is re�ned locally in regionswhere improved accuracy is needed, for example, near singularities, internal or bound-ary layers, re-entrant corners, etc. Those regions where the solution is expected to besmooth are not re�ned or can even be coarsened.�Appeared in Computing, Vol. 55, No. 4, pp. 355-378, 19951



Multigrid or multi-level methods have been proven to be of optimal or nearly optimalcomplexity for the solution of discrete systems arising from a wide range of partialdi�erential equations, in particular the elliptic ones. Because these methods are basedon discretization hierarchies obtained from successively re�ned meshes, they can beembedded especially well in an adaptive framework. This fact is also representedby recent multigrid convergence proofs (see [9] or [18]), which no longer require theunderlying meshes to be quasi-uniform, in contrast to the early theory, e.g. in [12].In industrial practice, however, at least in the three-dimensional case, adaptive and/ormulti-level methods are rarely applied, because possible users are often deterred fromthe necessity to generate and manage hierarchies of possibly highly non-uniformmeshes. In particular the re�nement of tetrahedral grids requires special care toavoid degenerated elements which may lead to deteriorating convergence rates.In the present paper we want to show that tetrahedral grid re�nement can be realizedin a very e�cient way. Our algorithm includes adaptive re�nement as well as partialcoarsening, and the resulting triangulations are consistent and stable. Therefore thealgorithmmay be useful also in other applications, for example in the area of computergraphics for the approximation of smooth surfaces.We start from the following assumptions. Let 
 � IR3 be a polyhedral domain, andassume that an initial triangulation T0 of 
 is given, that is, a set of non-degeneratedtetrahedral elements which cover 
 and are of mutually disjoint interior. Usually suchinitial triangulations should be as coarse as possible, just �ne enough to resolve theshape of 
 and the coe�cient jumps of the problem under consideration. Note thatin engineering practice the generation of useful initial triangulations is a complex andexpensive task, but this is no subject of the present paper. Here we are concernedwith successive re�nements of T0, that is, we want to generate sequences T0, T1, : : :,Tk, : : : of triangulations of 
, which satisfy the following conditions :(C1) Nestedness : Each element T 2 Tk, k > 0 is covered by exactly oneelement T 0 2 Tk�1, and any corner of T is either a corner or an edgemidpoint of T 0. T 0 is called the father element of T , and T is a son of T 0.(C2) Consistency : Each triangulation Tk is consistent , which means that theintersection of any two tetrahedra in Tk is either empty, a common face,a common edge or a common corner.(C3) Stability : The sequence T0, T1, : : :, Tk, : : : is stable in the sense that theinterior angles of all elements are uniformly bounded away from zero.The consistency condition prevents so called hanging nodes which for di�erent reasonsare undesired in many applications. In numerical algorithms, for example, hangingnodes do not represent degrees of freedom and are somewhat di�cult to handle,because the local correlation pattern of the sti�ness matrix is disturbed. On the otherhand, the asymptotic convergence properties of multigrid or other iterative methodsare not essentially a�ected by the existence of some isolated hanging nodes. Forreasons that will become clear later, consistent triangulations are also called closed .2



The stability condition, (C3), is equivalent to the requirement that some measure ofdegeneracy, �(T ), is uniformly bounded for all elements T . Such measures �(T ) canbe de�ned in various ways. We prefer to set �(T ) = `max(T )=%(T ), where `max isthe length of the longest edge and %(T ) is the diameter of the biggest inscribed ballof T . This �(T ) enters directly into approximation estimates for �nite element spaces(see [10]), and therefore also into the convergence theory of multi-level methods.Thus { in contrast to (C2) { stability is essential with respect to applicability of thetriangulations in numerical algorithms.Unfortunately, adaptivity, consistency, and stability are not compatible with eachother, because locally re�ned grids require elements of higher degeneracy to be closed.Therefore our re�nement algorithm is constructed in three steps. We �rst de�ne abasic strategy for the subdivision of a single tetrahedron into eight subtetrahedraof equal volume in such a way that successive re�nement of any initial element Tproduces stable and consistent triangulations of T . Re�nement strategies of this typeare called regular . Then we choose a set of irregular re�nement rules for elements thatare not re�ned regularly but share a re�ned edge or side of another element. Theseirregular re�nements are only used for the closure, i.e. to satisfy the consistencycondition.Both regular and irregular re�nement rules are local1 in the sense that they areapplied to single elements. In contrast, the third and �nal step consists in a superiorglobal re�nement algorithm that describes how the local rules can be combined andrearranged in order to ensure consistency and stability at the same time. For thispurpose, we introduce some additional global conditions. Before studying the localand global strategies in detail, we brie
y discuss some well known methods for the2D case and the di�culties arising in three dimensions.1.1. Local Re�nements in 2DFor two-dimensional triangular grids, re�nement methods satisfying (C1-3) are wellknown. Perhaps the most popular one is the combination of red (regular) and green(irregular) re�nements which has been proposed by R. E. Bank et al. in [3] andthen implemented into the well known multigrid code PLTMG [2]. A red re�nementsubdivides a given triangle into four congruent ones by connecting the midpoints of itsedges. Green re�nements are only used to close triangulations and consist of simplebisections connecting one edge midpoint and the opposite corner.A second major class of 2D re�nement methods is based on bisections only. Thesebisection methods can be distinguished by their way of preserving stability. M. C.Rivara, for example, uses the longest edge for bisection, [17]. Although the numberof generated congruence classes may be in�nite, her method can be shown to bestable. In contrast, the algorithm of W. F. Mitchell produces triangles of at mostfour congruency classes by dividing the edge in opposition to the newest vertex ([16]).1 These should not be confused with usual local re�nements in the sense of adaptivity.3



Note that two successive newest-vertex-bisections { provided the second step is ap-plied to both sons { divide a given element into four subtriangles of equal volume andthus can be interpreted as one step of a regular 2D re�nement method, since (C1-3)are also satis�ed.The stable re�nement of tetrahedral grids is more complex. In contrast to the 2Dcase, there is obviously no way to divide any given tetrahedon into eight congruentones. Nevertheless, it is possible to extend both of the regular re�nement strategies tothree dimensions. For this purpose algorithms have been developed by several authorsduring the last years. Three-dimensional bisection methods have been presented, e.g.by E. Baensch, [1], and J. M. L. Maubach, [15], whereas the 3D analogon ofBank's red re�nement strategy was introduced independently by S. Zhang in [19]and the author in [6].The second strategy forms the basis of this paper. It is marked by the fact that for anyinitial tetrahedron it produces elements of at most three congruence classes, no matterhow many successive re�nement steps are performed. Note that the N -dimensionalgeneralization of this method was proposed already in 1942 byH. Freudenthal [11].1.2. Global Re�nement AlgorithmThe global algorithm describes how the local rules can be combined in order to gen-erate stable sequences of consistent triangulations. It is based on the following tworestrictions :(C4) Irregular elements are never re�ned.(C5) T 2 Tk [ Tk+1 implies T 2 T` for all ` � k, that is, if an element is notre�ned passing from Tk to Tk+1, then it remains unre�ned in any T`, ` > k.Here irregular elements are those resulting from irregular re�nements. All otherelements are called regular . Condition (C4) prevents the irregular re�nements fromdestroying the stability of the regular ones and induces smooth transitions betweenregions of varying re�nement depth. Condition (C5) does not really restrict the set ofpossible triangulations but allows the unique reconstruction of the complete sequenceT0, : : :, Tk, if only T0 and Tk are known. Thus it makes sense to assign to each elementT a level index ` which is given by ` = minf k jT 2 Tk g.There are mainly two reasons to require (C5). First, the size of any given elementcan be estimated by the size of an ancestor using the corresponding level distance,and thus (C5) is a usual requirement in the theory of multi-level methods (cf. [18]).On the other hand, the representation of the global algorithm is essentialy simpli�ed,because it can be formulated in terms of operations that refer to all elements of acommon level (see Section 3).Conditions (C4,5) often lead to misunderstandings, which are caused by the wide-spread assumption that every re�nement step is applied to the momentary �nesttriangulation Tk to produce the next �ner triangulation Tk+1 in such a way that4



T0, : : :, Tk and Tk+1 satisfy (C1-5). An algorithm of this type would be less usefulbecause, �rst, it does not take into consideration partial coarsening, and second,(C4,5) prohibit supplementary re�nements of temporarily unre�ned regions. Bothwill be necessary at least in time-dependent numerical applications.Our view of a re�nement algorithm is more general and not restricted to the �nestgrid only. Given any input sequence T0, : : :, Tk, it produces another output sequenceT 00 , : : :, T 0` that satis�es the above conditions but does not have to contain any ofthe input triangulations with exception of T 00 = T0. In addition, we do not require` = k + 1, but allow ` 2 f k; k � 1 g to catch also pure coarsening.Under these circumstances, (C4) and (C5) lose their restrictive character. To main-tain (C4), irregular re�nements can be substituted by regular ones if an irregularelement or one of its neighbors is assigned for further subdivision. Temporarily unre-�ned elements can be re�ned in agreement with (C5) by making sure that the sons areinserted at the correct level. These rearrangements, as well as possible coarsenings,are also tasks of the global algorithm.From this point on, the paper is organized as follows. In Section 2 we present thebasic regular re�nement method for tetrahedral elements and add some irregular rulesfor the closure. Some advantages of our method in comparison with the bisectionmethods ([1], [15]) are discussed. In Section 3 we then describe the global re�nementalgorithm. It is formulated independently of any speci�c programming language andconsequently does not use prescribed data structures as, for example, records orpointers. Instead, it operates on abstract objects like elements, edges, and nodes.Finally, in the Appendix, the stability proof for the regular re�nement method fromSection 2 is delivered subsequently.2. Tetrahedron Re�nementIn this section we present the local re�nement strategies for single elements. Thebasic regular re�nements, as proposed in [6], [19], produce consistent and stable tri-angulations of any given initial tetrahedron. Irregular re�nement rules are used forthe closure only. 2.1. Regular Re�nementLet T be any given tetrahedron. We are looking for a subdivision of T into eightsubtetrahedra T1, : : :, T8 of equal volume, in such a way that each corner of a son Ticoincides with either a corner or an edge midpoint of T .Therefore we �rst connect the edges of each face triangle of T in the same way asin the two-dimensional regular re�nement (Figure 1). Then we cut o� four subtetra-hedra at the corners which are congruent with T . In the interior of the remainingoctahedron there are three parallelograms, as shown in Figure 2. Cutting the octa-hedron along two of these parallelograms, we obtain four more subtetrahedra. Eachchoice of two cut parallelograms corresponds to one of three possible diagonals, asshown in Figure 3. 5



Figure 1: Regular re�nementof the faces Figure 2: Interior parallelogramsFigure 3: Interior diagonalsNote that the eight subtetrahedra are of equal volume, but the interior ones are notcongruent with T in general. Therefore the question arises, which of the possible diag-onals should be chosen in successive re�nement steps. It has been shown in [19] thatthe wrong choice may lead to degenerated elements. In [6], however, we introduceda simple algorithm which for any initial element generates subtetrahedra of at mostthree congruence classes, no matter how many successive re�nements are performed.Thus the stability of the generated triangulations is preserved.To describe the algorithm we assume any tetrahedron T to be given by an orderedsequence of its vertices : T = [x0;x1;x2;x3 ]. For 0 � i; j � 3, i 6= j we denote byxij := (xi+xj)=2 the edge midpoint between xi and xj. Then the regular re�nementalgorithm can be formulated as follows :Algorithm RegularRe�nement(T)f divide T = [x0;x1;x2;x3 ] into the subtetrahedra Ti, 1 � i � 8, given byT1 := [ x0 ; x01; x02; x03 ]; T5 := [ x01; x02; x03; x13 ];T2 := [ x01; x1 ; x12; x13 ]; T6 := [ x01; x02; x12; x13 ];T3 := [ x02; x12; x2 ; x23 ]; T7 := [ x02; x03; x13; x23 ];T4 := [ x03; x13; x23; x3 ]; T8 := [ x02; x12; x13; x23 ]:gThe subtetrahedra T1, : : :, T4 are those from the corners which are congruent with T ,whereas T5, : : :, T8 originate from the remaining octahedron. The chosen diagonal isgiven by the vertices x02 and x13 that are common to all interior sons. Consequentlythe diagonal is implicitly characterized by the order of vertices, and thus the latterone is essential for the algorithm. The maximum number of generated congruenceclasses depends on the de�nition of congruence :6



De�nition : Two tetrahedra T1, T2 are de�ned to be congruent , if they can be madeto coincide by a rigid motion and a positive or negative scaling, i.e., if there exists ascaling factor c 6= 0, a translation vector x, and an orthogonal matrix Q such thatT1 = x + cQ T2 := fx + cQx0 j x0 2 T2 g:Of course congruence represents an equivalence relation and therefore all tetrahe-dral elements can be divided into congruence classes. In the following theorem westate that for any initial tetrahedron the above algorithm produces elements of atmost three congruence classes, no matter how many successive re�nement steps areperformed. This fact immediately implies stability.Theorem 1 : For any initial tetrahedron T , recursive application of algorithmRegularRe�nement produces consistent and stable triangulations of T . Moreover,all generated elements belong to one of at most three congruence classes.Proof: We just sketch the proof at this point and refer to the Appendix for details.It is based on the dissection of the unit cube into six tetrahedra passing into eachother by permutation of their co-ordinates. It turns out that applying algorithmRegularRe�nement to each of them yields the same triangulation as when we �rstdivide the cube into eight subcubes which again are subdivided into six tetrahedra asindicated above. This process can be repeated, and the assertion follows by inductionand the usual a�ne transformation argument.Remark 1 : Although the vertex numbering is given for generated elements perde�nition, there is some freedom in choosing the vertex order of initial elements.In [19], S. Zhang has shown that the maximum measure of degeneracy of the sonsis minimized if the vertices of any initial tetrahedron T are numbered in such away that the diagonal between x02 and x13 is as short as possible. Extending thisidea, he investigates a second strategy that chooses always the shortest diagonal forre�nement. He could show that this shortest-interior-edge strategy is equivalent to themethod presented above, as long as it is applied to initial elements with non-obtusefaces and suitable vertex order. Otherwise, for elements with at least one obtusetriangle, shortest-interior-edge subdivision may generate any number of congruenceclasses. In this case stability remains to be proven.Remark 2 : In 1942, H. Freudenthal proposed a method for the stable re�nementof N -dimensional simplicial grids. It turns out that the three-dimensional case ofhis method is equivalent to the algorithm presented above. Bank's red re�nementscorrespond to the case N = 2. It can be shown that for general N � 2 the numberof generated congruence classes is given by N !=2. In addition, one can prove thatthis number is optimal in the sense that any other regular re�nement method basedon (C1) produces at least N !=2 congruence classes for almost all initial N -simplices,provided that su�cientlymany re�nement steps are performed (see [5]). Furthermore,the proof of Theorem 1 in the Appendix { which also carries over to theN -dimensionalcase { indicates that all generated elements of a certain congruence class can be made7



to coincide just by translation and scaling. A rotation { as allowed by De�nition 1 { isnot necessary. These facts can be used to increase the e�ciency of various algorithmsbased on such grids. In �nite-element or �nite-volume applications, for example,the assembling of local sti�ness matrices represents one of the most time-consumingtasks that can be considerably improved by calculating and storing just once datathat depend on the elements' level and congruence class only.Remark 3 : The newest-vertex-bisection of Mitchell, [16], has been generalizedto N � 2 dimensions by J. M. L. Maubach, [15]. It can be shown that thismethod produces 2N�2 �N ! congruence classes provided that N successive bisections(each applied to all possible sons) are considered as one (regular) re�nement step.Moreover, these 2N�2 �N ! congruence classes contain those N !=2 classes generated byFreudenthal's algorithm. Therefore { in comparison with 3D newest-vertex-bisection {algorithm RegularRe�nement produces only a quarter of the number of congruenceclasses but at most the same maximum measure of degeneracy.A second advantage of our method is given by the symmetric subdivision of thetriangular faces2, which allows regular re�nement of adjacent elements without con-sistency problems. In contrast, bisection methods may be also classi�ed by their wayof maintaining consistency even in the case of non-adaptive, global re�nements (cf.[1], [15], [16], [17]). On the other hand, bisection methods are usually preferred incombinatorial algorithms (e.g. for �xpoint approximation), where N is very large anda re�nement into 2N sons per element makes no sense.2.2. Irregular Re�nementsAs mentioned above, algorithm RegularRe�nement can be applied to adjacent ele-ments without consistency problems. In the case of adaptive re�nements, however,only a subset of the given tetrahedra will be assigned for regular subdivision, and thustriangulations have to be closed by further irregular re�nements in order to satisfy theconsistency condition. We call this procedure the green closure in analogy to Bank'salgorithm for the two-dimensional case [3].The 2D green closure can be realized by simple bisections if elements with two ormore subdivided edges are re�ned regularly. This strategy is also used in PLTMG, [2],but has the disadvantage that under certain circumstances regular re�nements canpropagate as in a game of dominoes. This expansion of the re�ned area can beprevented by providing a complete set of re�nement rules, that is, one for everypossible edge re�nement pattern. In 2D there are 23 = 8 di�erent patterns for thethree edges of a triangle. The full pattern corresponds to a regular re�nement andthe empty pattern indicates no re�nement at all. The remaining six patterns can bedivided into two types with one and two re�ned edges, respectively. The latter casecan be closed by connecting the midpoints of these edges and then one of them tothe opposite corner.2 This argument applies to the case N = 3 only.8



In three dimensions there are 26 = 64 possible edge re�nement patterns. Usingsymmetry arguments, the 62 irregular cases can be divided into 9 di�erent types. Forpractical reasons we do not specify a complete set of irregular rules for these 9 types {which indeed is possible { but restrict ourselves to the four types shown in Figure 4.
① ② ③ ④Figure 4: Irregular re�nements for the green closure in 3DThese four types are considered also in [8]. Type (1) is applied if one neighboringelement is re�ned regularly but no other edge is subdivided. Type (2) correspondsto elements with exactly one re�ned edge, and types (3) and (4) apply to two re�nededges on a common face and in opposition, respectively. The remaining cases arehandled according to the following instruction :(C6) If three or more edges are re�ned and do not belong to a common face,then the element is re�ned regularly.Remark 4 : Note that type (3) re�nements require special care in order to preserveconsistency even over the critical side with two re�ned edges. Therefore it is necessaryto coordinate the re�nements of both elements sharing this side.Remark 5 : In consequence of (C6), a domino e�ect may also occur in certainsituations. In practice, however, we observed that the expansion of regularly re�nedregions caused by (C4) is rather dominating.3. Global Re�nement AlgorithmThe global re�nement algorithm describes how the local rules from Section 2 canbe combined and rearranged in order to generate stable sequences of consistent tri-angulations. It is formulated independently of any speci�c programming languageand consequently does not use prescribed data structures as, for example, recordsor pointers. For these, we refer to [7], [14], and the references therein. Instead, ouralgorithm operates on some basic abstract objects.3.1. Abstract Data StructuresThe basic objects we are dealing with are elements, nodes, and edges. These aredistributed over the grids Gk of level k = 0, : : :, kmax in the following way : G0contains the elements, nodes, and edges of triangulation T0, whereas Gk, k > 0consists of those elements in Tk which do not already belong to Tk�1, as well as theiredges and nodes. The objects of grid Gk are said to be of level k. Condition (C5)implies that the elements of level k contain those of level k + 1.9



For any level k node N belonging to at least one re�ned level k element, there is asucceeding node N 0 with equal co-ordinates on level k+1, which in this case is calledthe son of N . Two nodes of the same level k are de�ned to be neighbors, if they areendnodes of a common level k edge. Two elements of the same level are neighbors, ifthey share a common triangular face.The basic objects are now connected by specifying some required references betweenthem. These are summarized in the following list. Given any element, for example,we assume to have access to its nodes, edges, neighbors, and sons. The (maximum)number of references to objects of a special type is given in parentheses. (� n) itemsindicate that some or all of these references may be missing. Unre�ned elements, forexample, have no sons. Note that the number of edges starting from a given node isnot restricted a priori but of course is bounded due to stability.Reference list :� Element ! Nodes (4), Edges (6), Sons (� 8), Neighbors (� 4).� Edge ! Endnodes (2), Midnode (� 1).� Node ! Edges (1), Son (� 1).For a simple representation of the re�nement algorithm, we describe the current stateof an element T by some self-explaining, symbolic constants. For example, "T isre�ned-regularly" means that T has been re�ned by algorithm RegularRe�nement.Otherwise T is either re�ned-irregularly or unre�ned. Unre�ned elements are calledleaf elements.On the other hand, each element is marked for a certain re�nement rule that mayor may not coincide with its actual re�nement. Let R be one of the local re�nementrules of Section 2, then "T is marked-for-re�nement-by-R" indicates that T shall bere�ned according to R. Mostly, it will be su�cient to know whether R is regular orirregular. In this case, we say that T ismarked-for-regular-re�nement andmarked-for-irregular-re�nement, respectively. In addition, T may be marked-for-no-re�nement orevenmarked-for-coarsening. In the latter case, T is allowed to be removed. Finally, Tis marked-according-to-re�nement, if mark and actual re�nement rule of T coincide.This is just the state that all elements are expected to have after termination of theglobal algorithm.In a similar way, we describe the state of an edge E of T . If T is marked-for-re�nement-by-R where R is a rule that is going to re�ne E, then we say that E ismarked-for-re�nement-by-T . E is just marked-for-re�nement, if there is at least oneelement T with edge E such that E is marked-for-re�nement-by-T .Remark 6 : Given any edge E, we assume to be able to decide immediately {without looking at the elements around it { whether E is marked-for-re�nement ornot. In practice, this requirement can be e�ciently satis�ed by associating to E acounter N(E) which is updated each time the mark of an element T around E ischanged. 10



3.2. The AlgorithmWe start the presentation of the global re�nement algorithm by specifying the ex-pected input, action, and output.Input : We assume that the global algorithm is applied to a sequence G0, : : :, Gkmaxof grids, which { in the way indicated above { correspond to triangulations that satisfyconditions (C1-5). Each leaf element is eithermarked-for-regular-re�nement,marked-for-no-re�nement, or marked-for-coarsening. These leaf element marks are usuallydetermined by application of an error estimator. All other elements are assumed tobe marked-according-to-re�nement.Action : The action of the algorithm is determined by the leaf element marks.These are evaluated in the following way : Regular leaf elements that are marked-for-regular-re�nement are re�ned regularly. Irregular elements marked-for-regular-re�nement are substituted by regular elements. Other marks of irregular elementsare ignored. Regularly re�ned elements are marked-for-no-re�nement if all sons aremarked-for-coarsening. Finally, the green closure is performed on conditions (C4-6).Output : The output sequence G00, : : :, G0k0max , k0max � 0 with G00 = G0 andk0max 2 f kmax; kmax � 1 g is required to satisfy the input speci�cation, but in additionwe expect all leaf elements to be marked-for-no-re�nement. Consequently, applyingthe global algorithm to the output sequence again will be of no e�ect.Algorithm GlobalRe�nement(G0; : : : ; Gkmax)f for k := kmax down to 0 do (1)f EvaluateMarks (Gk); (2)CloseGrid (Gk); (3)gfor k := 0 to kmax do if ( Gk 6= ; ) then (4)f if ( k > 0 ) CloseGrid (Gk); (5)Unre�neGrid (Gk); (6)Re�neGrid (Gk); (7)gif ( Gkmax = ; ) then kmax := kmax � 1; (8)else if ( Gkmax+1 6= ; ) then kmax := kmax + 1; (9)g Figure 5: Global re�nement algorithm11



The basic structure of the global re�nement algorithm is shown in Figure 5. It mainlyconsists of two phases : In Phase I, i.e. loop (1), the di�erent grid levels are visited ina top-down manner. The leaf element marks are evaluated (2) and the closure of thenext �ner level is computed between the regular elements (3). In Phase II, (4), thegrids are visited in reverse order (bottom-up). The closure is completed (5), unusedobjects are removed (6), and new objects are generated (7). Finally, the number ofoutput levels is determined by updating the maximum level number kmax (8), (9).In Phase II, the execution of (5) for k = 0 is omitted because level 0 elements areregular per de�nition. Since only leaf elements can be removed, Gk = ; in line (4) ispossible for k = kmax only. In this case, loop (4) is prematurely terminated and kmaxis decremented by one (8). Otherwise, kmax is incremented if there are new elementsof level kmax + 1 (9).The two phase top-down/bottom-up structure of algorithm GlobalRe�nement goesback to P. Bastian, who implemented a two-dimensional version for his UG code,[4]. The structure of the subroutines, however, is di�erent. These are explained inthe following subsection. 3.3. The SubroutinesAlgorithm GlobalRe�nement works element-based in the sense that all subroutinesstep over the elements of a given level. Function EvaluateMarks is responsible forevaluation and manipulation of the element marks according to the above speci�edaction of the algorithm. To satisfy (C4), irregularly re�ned elements are marked-for-regular-re�nement if at least one son has an edge that is marked-for-re�nement (6).This includes the case that the son itself is marked-for-regular-re�nement.Function EvaluateMarks(Gk) :f for all elements T 2 Gk : (1)f if ( T is re�ned-regularly and all sons of T are marked-for-coarsening ) (2)then T is marked-for-no-re�nement; (3)if ( T is re�ned-irregularly ) then (4)if ( at least one edge E of a son of T is marked-for-re�nement ) (5)then T is marked-for-regular-re�nement; (6)else T is marked-for-no-re�nement; (7)ggAfter termination of EvaluateMarks, all marks for irregular re�nements have beenremoved (in either (6) or (7)). If not substituted by a regular one, any irregularre�nement must be con�rmed by the following green closure that is computed infunction CloseGrid. 12



Function CloseGrid(Gk) :f let Q be the set of all regular elements T 2 Gk having at least one edge E (1)that is marked-for-re�nement but not marked-for-re�nement-by-T ;while ( Q 6= ; ) (2)f choose an element T 2 Q; (3)Q := Q n fTg; (4)CloseElement (T ); (5)ggIn function CloseGrid, the candidates for the closure are stored in a set Q (1). Can-didates are all regular elements T with an edge E that is marked-for-re�nement byanother element but not by T . Thus, elements marked-for-regular-re�nement cannotbe candidates. As long as Q is non-empty, an arbitrary element is poped out of Qand passed to function CloseElement to determine a suitable re�nement rule.Function CloseElement(T) :f Search for a re�nement rule R re�ning exactly those edges E of T (1)that are marked-for-re�nement;if ( R is found ) then (2)f if ( R is of type (3) and T 0 62 Q for the critical neighbor T 0 of T ) (3)then �t R to the mark of T 0; (4)T is marked-for-re�nement-by-R; (5)gelsef for all edges E of T that are not marked-for-re�nement : (6)Q := Q [ f T 0 2 Gk j T 0 6= T is regular and E is an edge of T 0 g; (7)T is marked-for-regular-re�nement; (8)ggGiven any element T , function CloseElement at �rst looks for a (regular or irregular)re�nement rule R with an edge re�nement pattern matching exactly the edges of Tthat are marked-for-re�nement (1). If such an R exists, T is marked-for-re�nement-by-R (5). Special care is necessary if R is of type (3) (cf. Remark 4 in Section 2.2).In this case, R must be �tted to the mark of the critical neighbor sharing both ofthe edges that are marked-for-re�nement (4), provided this neighbor does not belongto Q and thus is also marked for a type (3) re�nement.13



If a suitable R cannot be found, rule (C6) is applied and T is marked-for-regular-re�nement (9). In this case, all regular elements around those edges of T that pre-viously have not been marked-for-re�nement are now new candidates for the closureand hence added to Q (7). Note that the de�nition of Q as a set implies that everyelement occurs in Q not more than once.Remark 7 : In statement (7) of CloseElement, we refer to all elements T 0 sharinga given edge E. Of course, it is not necessary to store with each edge a list ofsurrounding elements. Since one of them, T , is known, we can make use of theelement neighborhood relations to determine the others, provided that edges at theboundary belong to exactly two triangular boundary faces3.CloseGrid is called twice for every grid level. In Phase I, the closure of level k + 1 iscomputed between the present regular elements of level k. Irregular level k elementsthat would be candidates for the closure are recognized during the following executionof function EvaluateMarks at level k � 1 (statement (5)). In this case, their fathersare marked-for-regular-re�nement in EvaluateMarks, (6), and thus, these irregularelements are substituted by regular ones in Phase II, function Re�neGrid, just beforeCloseGrid is called a second time at level k.Here the computation of the level k + 1 closure is extended to the additional regularelements of level k, which are initiallymarked-for-no-re�nement (see Re�neGrid, (6)).To prove consistency (Theorem 3), we will show later on that in this second phase(C6) is never applied, which means that no more edges are marked-for-re�nement.Therefore, consideration of these new elements is su�cient.Remark 8 : EvaluateMarks and CloseGrid only manipulate the marks of elementsin Gk but do not change their actual re�nements, i.e. do not create or remove anyobjects in Gk+1. This is done in Unre�neGrid and Re�neGrid, respectively.Unre�neGrid removes unused elements, nodes, and edges from the following level(7). For this purpose, the remaining objects are marked-for-re-use (5). Of course,we assume that these marks do not a�ect the re�nement marks of elements or edges.Re-used objects are all sons of elements that are marked-according-to-re�nement, aswell as their edges and nodes. At the beginning of function Unre�neGrid, a possiblenew grid level Gkmax+1 is initialized (1) and the re-use marks of all level k+1 objectsare reset (2), (3).3 In fact this is a condition on 
. 14



Function Unre�neGrid(Gk) :f if ( k = kmax ) then Gk+1 := ;; (1)for all objects O 2 Gk+1 : (2)O is not marked-for-re-use; (3)for all re�ned elements T 2 Gk that are marked-according-to-re�nement : (4)all sons of T , their edges and nodes are marked-for-re-use; (5)for all objects O 2 Gk+1 that are not marked-for-re-use : (6)Remove O from Gk+1; (7)gIn function Re�neGrid, the computed re�nements are actually realized. At �rst,in (2), any remaining marks for coarsening are switched into marks for no re�nementin order to let the concerned (leaf) elements be marked-according-to-re�nement.The main loop (3) is now executed for each element T 2 Gk that is not marked-according-to-re�nement. When entering the loop, the state of T is unre�ned { becauseall sons have been removed in function Unre�neGrid { and therefore T must bemarked for either regular or irregular re�nement. Now T is re�ned according to thismark which means that the corresponding son elements are created (4). All sonsare marked-for-no-re�nement (6) and added to Gk+1(7). Missing nodes and edges oflevel k + 1 must be created (9) in addition to those which have been marked-for-re-use in function Unre�neGrid. Finally, in (10), the existing neighbors of all sons aredetermined to update the neighborhood graph of level k + 1.Function Re�neGrid(Gk) :f for all elements T 2 Gk that are marked-for-coarsening : (1)T is marked-for-no-re�nement; (2)for all elements T 2 Gk that are not marked-according-to-re�nement : (3)f re�ne T according to the rule that T is marked for; (4)for all sons T 0 of T : (5)f T 0 is marked-for-no-re�nement; (6)Gk+1 := Gk+1 [ fT 0g; (7)�nd existing nodes and edges of T 0 in Gk+1; (8)create missing nodes and edges of T 0 and add them to Gk+1; (9)�nd existing neighbors of T 0 in Gk+1; (10)ggg 15



When function Re�neGrid is �nished, all elements of level k are marked-according-to-re�nement and thus one requirement of the output speci�cation is satis�ed. (C1-5)are established with Theorem 3 in the following subsection. To prove the optimalcomplexity of algorithm GlobalRe�nement, we have to be aware that the amount ofwork for (8) and (10) is bounded by a constant (i.e. O(1)) :Remark 9 : Since we have access to the existing son nodes and edge midnodes of T ,we can �nd the nodes of T 0 in (8) with constant amount of work. The same is alsotrue for the edges of T 0 because we know all edges starting at a given node. In (10),the neighbors of T 0 can be found in O(1) operations between the sons of T and thesons of neighbors of T . Here it is su�cient to consider those neighbors of T whichare already marked-according-to-re�nement.3.4. Complexity and CorrectnessTheorem 2 : The amount of work of algorithm GlobalRe�nement is proportionalto the number n�out of leaf elements in the output sequence G00, : : :, G0k0max .Proof: Let nk be the number of elements of level k and n = n0+: : :+nkmax be the totalnumber of elements of the input sequence. Taking into account Remarks 6 and 9,it is clear that each of the functions EvaluateMarks, Unre�neGrid, and Re�neGridperforms a limited number of operations for every element and thus the amount ofwork for these functions on level k is of order O(nk). The same is also true forfunction CloseGrid, because every element can be added to Q no more than six times{ once for every edge { in statement (7) of function CloseElement. Therefore thecomplexity of algorithm GlobalRe�nement is of order O(n).Let now n�in be the number of leaf elements of the input sequence. Then the geomet-ric growth of the number of leaf elements with increasing re�nement depth impliesn � 2n�in. The local re�nement and coarsening rules imply 1=8n�in � n�out � 8n�in. Incombination with the O(n) result, these inequalities complete the proof.If we consider the corresponding triangulations T 0k instead of the gridsG0k, then the leafelements of the output sequence are just the elements of the �nest triangulation T 0k0max .It follows that the amount of work of algorithmGlobalRe�nement is even proportionalto the number of nodes of T 0k0max , provided the generated triangulations are stable. Thefollowing theorem ensures stability as well as consistency.Theorem 3 : Let T0 be a consistent initial triangulation of the polyhedral domain 
.Then recursive application of algorithm GlobalRe�nement { in alternation with anygiven strategy for the generation of the leaf element marks { produces sequences oftriangulations that satisfy conditions (C1-5).Proof: Of course, (C1) follows from the de�nition of the local re�nement rules inSection 2. (C4,5) are satis�ed by construction of the algorithm. Stability (C3) followsfrom the stability of the regular re�nements (Theorem 1) in combination with (C4).16



Still, consistency remains to be proven. This is done by induction over the gridlevels k. The consistency of T 00 = T0 is given by assumption. Let now T 0k be consistentfor a �xed 0 � k < k0max. After application of function CloseGrid in Phase I, thealready existing regular elements of Gk are marked for consistent re�nement. InPhase II, CloseGrid operates on those additional regular elements { generated by thepreceeding Re�neGrid call { which have an edge that is marked-for-re�nement.We now have to show that it is su�cient to consider these new elements. Therefore letE be any edge of level k that is marked-for-re�nement. The consistency of T 0k impliesthat { at least inside 
 { E is completely surrounded by level k elements. Moreover,these elements are regular due to statement (6) of function EvaluateMarks. Thus thesecond call to CloseGrid yields a consistent triangulation T 0k+1 of 
, provided that noadditional edges are re�ned by applying (C6) in CloseElement, (8).To see that this cannot be the case, assume that (C6) is applied to a just createdregular element T of level k. Then there are at least three edges of T that are marked-for-re�nement but do not belong to a common face. Without loss of generality wemay assume that (C6) is applied the �rst time on this level. Therefore the three edgesof T did exist and have been marked-for-re�nement already in Phase I. It follows thatat this time also the father element T 0 of T has had at least three re�ned edges onmore than one face. Thus T 0 was a regularly re�ned element, in contradiction to theassumption that T is a new regular element. Consequently (C6) is never applied inPhase II, which proves consistency.3.5. The Adaptive Grid Manager AGM 3DThe AGM 3D code contains our actual implementation of the algorithm presentedabove. This Adaptive Grid Manager provides a set of problem independent toolsfor the adaptive numerical solution of PDE's in three space dimensions. It originatesfrom an early three-dimensional version of Bastian's 2D code UG (Unstructured Grids,cf. [4]). Many of the basic concepts of UG also entered into AGM 3D, in particularthe two phase top-down/bottom-up structure of the global re�nement algorithm.The AGM 3D code is written in ANSI C, and the basic data structures are especiallydesigned for the application of multigrid and multi-level algorithms. The re�nementprocedure of AGM 3D is somewhat more advanced than the algorithm described inthis paper. In particular, it includes the approximation of curved boundaries byprojection of boundary edge midnodes. Graphical representation of generated gridsis also possible. For this purpose, the multi-level structure is used for an e�cientsolution of the hidden-elements problem. For a more detailed description of AGM 3Dand in particular the re�nement routines, we refer to the manual ([7]). Both codeand manual can be obtained from the author.To �nish the representation of the global algorithm, we show two pictures of adap-tively re�ned triangulations that have been generated by AGM 3D. A re�nement ofthe unit cube arising during the solution of a convection-di�usion problem is shown17



in Figure 6. For an improved three-dimensional impression, the cube has been cutopen along its main diagonal. Here the smooth transitions between regions of varyingre�nement depth caused by (C4) can be observed especially well. Figure 7 shows thelower half of a re�ned torus. To approximate its curved boundary, every generatedmidnode of a boundary edge has been projected to the boundary. Note that projectionto a concave part of the boundary may destroy stability if the initial triangulation T0is not suitably chosen.
Figure 6: Triangulation of the unit cube Figure 7: Triangulation of a torusAppendixIt remains to complete the proof of Theorem 1 in Section 2. Its leading part can befound implicitly in the early paper of H. Freudenthal, [11], who investigated thestable re�nement of N -dimensional simplicial grids. At the beginning, we recall theassertion of Theorem 1 :Theorem 1 : For any initial tetrahedron T , recursive application of algorithmRegularRe�nement produces consistent and stable triangulations of T . Moreover,all generated elements belong to at most three congruence classes.Proof: Of course, stability follows from the last statement. The proof of Theorem 1is based on the dissection of the unit cube C = [ 0; 1 ]3 into six tetrahedra passinginto each other by permutation of their co-ordinates. For any permutation � 2 S3,the tetrahedron T� = [x0�;x1�;x2�;x3� ] is de�ned to be the closed convex hull of thecorners x0� = (0; 0; 0)T ; xi� = xi�1� + e�(i); i = 1; 2; 3; (1)where ej denotes the jth standard unit vector in IR3. The de�nition of the convexhull implies the representationT� = fx 2 C j 0 � x�(3) � x�(2) � x�(1) � 1 g; � 2 S3: (2)Clearly T0 = T0(C) := fT� j� 2 S3 g is a triangulation of C. Moreover, one may easilyverify that for � 6= �0 the intersection of T� and T�0 is a common lower dimensionalsubsimplex, and thus T0 is consistent. According to [13], T0 is called the Kuhn-triangulation of C. It is shown in Figure 8.18



(1,1,1)

(0,0,0)Figure 8: Kuhn-triangulation of the unit cubeAnother triangulation T1 of C can be de�ned in the following way : Let B be thecanonic subdivision of C into eight subcubes of edge length 12 , that isB := fCx j x 2 f 0; 12 g3 g; (3)where Cx, x 2 f 0; 12 g3 is given byCx := x + 12 C := fx + 12 x0 j x0 2 C g: (4)The Kuhn-triangulation of any subcube Cx is given by the tetrahedra Tx;� := x+ 12 T�,� 2 S3. Consequently, T1 := fTx;� j x 2 f 0; 12 g3; � 2 S3 g (5)is a triangulation of C. The consistency of T1 follows from the consistency of T0and the fact that Kuhn-triangulations of adjacent subcubes Cx, Cx0 induce a unique2D-triangulation of the common face.We now show that T1 is a re�nement of T0 in the sense of condition (C1). Given anyx 2 f 0; 12 g3 and � 2 S3, we are looking for a permutation �� = ��(x; �) such thatTx;� � T��. Therefore let 0 � k � 3 be the number of entries xi of x with xi = 12. Itfollows that there are k unique indices i1; : : : ; ik 2 f 1; 2; 3 g satisfying1 � i1 < � � � < ik � 3; x�(i1) = � � � = x�(ik) = 12 ; (6)whereas the remaining 3� k indices ik+1; : : : ; i3 2 f 1; 2; 3 g can be ordered such that1 � ik+1 < � � � < i3 � 3; x�(ik+1) = � � � = x�(i3) = 0: (7)Here and in the following, for the cases k = 0 and k = 3 we skip over those parts of thecorresponding (in)equalities that make no sense. We now de�ne �� by ��(j) = �(ij),1 � j � 3. From the right hand sides of (6) and (7), we conclude thatx��(1) = � � � = x��(k) = 12; x��(k+1) = � � � = x��(3) = 0: (8)Further, for any � = (�1; �2; �3)T 2 12 T� we have 0 � ��(3) � ��(2) � ��(1) � 12. Usingthe left hand sides of (6) and (7), we obtain0 � ���(k) � � � � � ���(1) � 12 ; 0 � ���(3) � � � � � ���(k+1) � 12 : (9)19



Combining (8), (9) with (2) proves Tx;� � T�� . Of course, by construction, any cornerof Tx;� corresponds to either a corner or an edge midpoint of T�� and thus T1 is infact a re�nement of T0 in the sense of (C1).At this point, we have shown the existence of a re�nement method for the elements ofthe Kuhn-triangulation T0 of C. This method yields the same triangulation T1 thatis obtained if we �rst subdivide C into the eight subcubes Cx 2 B and these again byKuhn-triangulation. Figure 9 illustrates these equivalent ways of generating T1.C T0B T1Figure 9: Two ways of generating T1We now want to show that T1 is exactly the triangulation which is generated if algo-rithm RegularRe�nement is applied to all elements T� 2 T0, provided their verticesare numbered according to (1). Therefore we �rst consider the reference elementT0 := T�id = T(1;2;3) with corners (0; 0; 0)T , (1; 0; 0)T , (1; 1; 0)T and (1; 1; 1)T . Us-ing algorithm RegularRe�nement to re�ne T0, it is easily veri�ed that the generatedsons T0;i, 1 � i � 8 can be represented byT0;i = xi + 12 T�i ; xi 2 f 0; 12 g3; �i 2 S3; 1 � i � 8: (10)If the subsequent order of sons T0;i corresponds to the formulation of the re�nementalgorithm in Section 2, the start vertices xi and permutations �i, 1 � i � 8 are givenby x1 = (0; 0; 0)T ; x2 = x5 = x6 = (12; 0; 0)T ;x3 = x7 = x8 = (12 ; 12 ; 0)T ; x4 = (12 ; 12; 12)T ; (11)and �1 = �2 = �3 = �4 = �id;�5 = (2; 3; 1); �6 = (2; 1; 3); �7 = (3; 1; 2); �8 = (1; 3; 2); (12)respectively. Representation (10) implies T0;i 2 T1 for 1 � i � 8. For i 6= j, (11)resp. (12) show that either xi 6= xj or �i 6= �j is true. Therefore, T0;i, T0;j correspondto di�erent elements Txi;�i, Txj ;�j 2 T1, which are known to have mutually disjointinterior. Furthermore, we conclude from (10) that the volumes of all sons sum up tothe volume of T0, and thus the convexity of T0 implies that the generated re�nementof T0 coincides with the one induced by T1.20



To obtain the same result for the other elements in T0, we associate to each � 2 S3 thecorresponding permutation matrix P� which is given by P� = (�i;�(j))3i;j=1. We thenhave T� = P�T0 and in particular for the corners xj� = P�xj�id , 0 � j � 3. Applyingalgorithm RegularRe�nement to T� yields the sons T�;i = P�T0;i, 1 � i � 8. Denotingby � � �i the composition of �, �i within S3, and using the fact that the associatedpermutation matrix is given by P���i = P�P�i , the analogon to (10) is established byT�;i = P�T0;i = P�xi + 12 T���i: (13)Now P�xi 2 f 0; 12 g3 implies T�;i 2 T1 for each 1 � i � 8, � 2 S3. Using theargumentation from above, it follows that the generated re�nement of T� coincideswith the one induced by T1. Since this is true for any � 2 S3, T1 is in fact thetriangulation generated from T0 by algorithm RegularRe�nement.In addition to (10), i.e. T0;i = xi + 12 T�i, we observe that the vertex numbering as-signed to T0;i by the re�nement algorithm coincides with the one induced by T�i, i.e.the jth corner of T0;i is given by xi + 12 xj�i . This property is preserved under permu-tation and remains valid for any element of T1. If now algorithm RegularRe�nementis recursively applied to the elements of T1, it follows by induction that the generatedtriangulations Tk, k � 0 of C are given byTk = nTx;� = x + 2�k T� ��� x 2 f 0; 1 � 2�k; : : : ; (2k � 1) � 2�k g3; � 2 S3 o ; (14)and thus can also be obtained by �rst dividing C into 8k subcubes of edge length 2�k,which then are subdivided by Kuhn-triangulation.To �nish the proof, let T = [x0;x1;x2;x3 ] be any non-degenerated tetrahedron, andlet F : T0 ! T be the a�ne transformation that maps T0 one-to-one on T and inparticular xj�id to xj for 0 � j � 3. F maps edges and edge midpoints of T0 to thecorresponding edges and midpoints of T . Therefore recursive application of algorithmRegularRe�nement to T yields triangulationsTk(T ) = fF(T̂ ) j T̂ 2 Tk(C); T̂ � T0 g; k = 0; 1; 2; : : : : (15)The consistency of Tk(C) implies the consistency of Tk(T ) for all k � 0. Moreover,any T̂ 2 Tk(C) of any level k � 0 can be represented by T̂ = x̂+2�k T�̂ with suitablex̂ 2 IR3, �̂ 2 S3. It follows thatF(T̂ ) = F x̂ � 2�kx0 + 2�k F(T�̂) (16)is congruent with F(T�̂). We further observe that for any pair �; �0 2 S3 satisfying�0(j) = �(4� j), j = 1; 2; 3 we have� T�0 = �(1; 1; 1)T + T�; (17)implying that F(T�0) is congruent with F(T�). Thus the elements of all triangulationsTk(T ), k � 0 belong to at most three congruence classes. These arguments completethe proof. 21
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