Commit 12f9400b by Jannes Bantje

### fix a typo

Pipeline #52811 passed with stages
in 18 seconds
 ... ... @@ -90,7 +90,7 @@ The next main player of coarse index theory is the so-called \emph{localisation In the same setting as above we now look at the family $\varphi \enbrace*{\frac{1}{t} D}$ for $t \in [1,\infty)$.\todo{in what sense is this \enquote{local}?} If $\supp \widehat{\varphi} \subseteq (-r,r)$ we once again get $\varphi \enbrace*{\frac{1}{t} D} = \frac{1}{\sqrt{2 \pi_n}} \int\limits_{-r}^r \widehat{\varphi}(\xi) e^{i \xi \frac{1}{t} D} \, \mathd \xi = \frac{1}{\sqrt{2 \pi_n}} \int\limits_{-r/t}^{r/t} \widehat{\varphi}(t \cdot \eta) e^{i \xi \eta D} \, \mathd \xi \varphi \enbrace*{\frac{1}{t} D} = \frac{1}{\sqrt{2 \pi}} \int\limits_{-r}^r \widehat{\varphi}(\xi) e^{i \xi \frac{1}{t} D} \, \mathd \xi = \frac{1}{\sqrt{2 \pi}} \int\limits_{-r/t}^{r/t} \widehat{\varphi}(t \cdot \eta) e^{i \xi \eta D} \, \mathd \xi$ \begin{definition} ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!