Commit 12f9400b authored by Jannes Bantje's avatar Jannes Bantje

fix a typo

parent ad32adb2
Pipeline #52811 passed with stages
in 18 seconds
......@@ -90,7 +90,7 @@ The next main player of coarse index theory is the so-called \emph{localisation
In the same setting as above we now look at the family $\varphi \enbrace*{\frac{1}{t} D}$ for $t \in [1,\infty)$.\todo{in what sense is this \enquote{local}?}
If $\supp \widehat{\varphi} \subseteq (-r,r)$ we once again get
\[
\varphi \enbrace*{\frac{1}{t} D} = \frac{1}{\sqrt{2 \pi_n}} \int\limits_{-r}^r \widehat{\varphi}(\xi) e^{i \xi \frac{1}{t} D} \, \mathd \xi = \frac{1}{\sqrt{2 \pi_n}} \int\limits_{-r/t}^{r/t} \widehat{\varphi}(t \cdot \eta) e^{i \xi \eta D} \, \mathd \xi
\varphi \enbrace*{\frac{1}{t} D} = \frac{1}{\sqrt{2 \pi}} \int\limits_{-r}^r \widehat{\varphi}(\xi) e^{i \xi \frac{1}{t} D} \, \mathd \xi = \frac{1}{\sqrt{2 \pi}} \int\limits_{-r/t}^{r/t} \widehat{\varphi}(t \cdot \eta) e^{i \xi \eta D} \, \mathd \xi
\]
\begin{definition}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment