Commit cc1644bc by Jannes Bantje

### introduce Chern character properly

parent 82d9a2da
Pipeline #59748 passed with stages
in 29 seconds
 ... ... @@ -82,7 +82,7 @@ The general idea is to consider Chern resp. Pontryagin classes formally as eleme $c(E) = (1 + x_1) \cdots (1+ x_n) = 1 + c_1 + \ldots + c_r$ where the Chern class $c_r= \sigma(x_1, \ldots ,x_n)$ is the $r$-th \Index{elementary symmetric function} in the $x_i$. where the Chern class $c_r= \sigma_r(x_1, \ldots ,x_n)$ is the $r$-th \Index{elementary symmetric function} in the $x_i$. By assuming the existence of Hermitian structures on the $E_1$, we can reduce their structure groups from $\mathbb{C}^\times$ to $T^1=S^1\cong\Unitary(1)$ and therefore the one of $E$ to $T^n = \set*{A \in \Unitary(n) \given A = \operatorname{diag} \enbrace*{e^{2 \pi i \varphi_1},\ldots , e^{2 \pi i \varphi_n}}, \varphi_i \in \mathbb{R}} ... ... @@ -326,7 +326,47 @@ From a computational point of view, one could say, that we now plug the Chern cl References: \cite[Ex.~III.11.11]{lawson_spin} \end{example} The next player, that we need too, is the \Index{Chern character}. The next player, that we need too, is the \Index{Chern character}: Let E be a complex vector bundle of dimension n over X. We may write the total rational Chern class formally as\marginnote{\deg x_i=2} \[ c(E) = 1 + c_1 + \ldots + c_n = (1+x_1) \cdots (1+x_n)$ so that $c_i = \sigma_i(x_1, \ldots ,x_n)$ by the splitting principle. \begin{definition} The expression $\ch(E) = e^{x_1} + \ldots + e^{x_n} = n + \sum_{j=1}^{n} x_j + \frac{1}{2} \sum_{j=1}^{n} x_j^2 + \ldots$ is called the \Index{Chern character} of $E$. \end{definition} The term of degree $k$ in $\ch(E)$ is the symmetric polynomial $\ch^kE = \frac{1}{k!} \sum_{j=1}^{n} x^k_j$, which therefore can be written as a polynomial in the elementary symmetric functions $c_1, \ldots ,c_n$. In particular $\ch E = n + \ch^1 E + \ch^2 E + \ldots \in H^{2^*}(X;\mathbb{Q})$ is well-defined. Note, that for a complex line bundle $L$ we have $\ch(L) = e^{c_1(L)}$. The nice thing about the Chern character is the following: \begin{proposition} For complex vector bundles $E,E'$ over $X$, we have \begin{enumerate}[(i)] \item $\ch(E \oplus E') = \ch(E) + \ch(E')$ \item $\ch(E \otimes E') = \ch(E) \ch(E')$ \end{enumerate} \end{proposition} This gives a ring homomorphism $\ch \colon \K(X) \To{} H^{2^*}(X;\mathbb{Q})$ \begin{remark} This can be generalised \emph{drastically} to generalised cohomology theories! This is the arena of the Atiyah--Hirzebruch spectral sequence. \end{remark} % section index_theory (end) % chapter elliptic_genera_phd_seminar (end) \ No newline at end of file
 ... ... @@ -232,6 +232,7 @@ % \newcommand{\M}{\mathrm{M}\mkern-3mu} \newcommand{\thoM}{M\mkern-3mu} \DeclareMathOperator{\td}{td} \DeclareMathOperator{\ch}{ch} \newcommand{\tmf}{\ensuremath{\mathrm{tmf}}} \DeclareMathOperator{\Map}{Map} \newcommand{\sa}{\mathrm{sa}} ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!