Newer
Older
=========================
Clang Language Extensions
=========================
.. contents::
:local:
.. toctree::
:hidden:
ObjectiveCLiterals
BlockLanguageSpec
AutomaticReferenceCounting
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Introduction
============
This document describes the language extensions provided by Clang. In addition
to the language extensions listed here, Clang aims to support a broad range of
GCC extensions. Please see the `GCC manual
<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
these extensions.
.. _langext-feature_check:
Feature Checking Macros
=======================
Language extensions can be very useful, but only if you know you can depend on
them. In order to allow fine-grain features checks, we support three builtin
function-like macros. This allows you to directly test for a feature in your
code without having to resort to something like autoconf or fragile "compiler
version checks".
``__has_builtin``
-----------------
This function-like macro takes a single identifier argument that is the name of
a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
It can be used like this:
.. code-block:: c++
#ifndef __has_builtin // Optional of course.
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
#endif
...
#if __has_builtin(__builtin_trap)
__builtin_trap();
#else
abort();
#endif
...
.. _langext-__has_feature-__has_extension:
``__has_feature`` and ``__has_extension``
-----------------------------------------
These function-like macros take a single identifier argument that is the name
of a feature. ``__has_feature`` evaluates to 1 if the feature is both
supported by Clang and standardized in the current language standard or 0 if
not (but see :ref:`below <langext-has-feature-back-compat>`), while
``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
current language (either as a language extension or a standard language
feature) or 0 if not. They can be used like this:
.. code-block:: c++
#ifndef __has_feature // Optional of course.
#define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif
#ifndef __has_extension
#define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
#endif
...
#if __has_feature(cxx_rvalue_references)
// This code will only be compiled with the -std=c++11 and -std=gnu++11
// options, because rvalue references are only standardized in C++11.
#endif
#if __has_extension(cxx_rvalue_references)
// This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
// and -std=gnu++98 options, because rvalue references are supported as a
// language extension in C++98.
#endif
.. _langext-has-feature-back-compat:
For backwards compatibility reasons, ``__has_feature`` can also be used to test
for support for non-standardized features, i.e. features not prefixed ``c_``,
``cxx_`` or ``objc_``.
Another use of ``__has_feature`` is to check for compiler features not related
to the language standard, such as e.g. :doc:`AddressSanitizer
<AddressSanitizer>`.
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
to ``__has_feature``.
The feature tag is described along with the language feature below.
The feature name or extension name can also be specified with a preceding and
following ``__`` (double underscore) to avoid interference from a macro with
the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
of ``cxx_rvalue_references``.
``__has_attribute``
-------------------
This function-like macro takes a single identifier argument that is the name of
an attribute. It evaluates to 1 if the attribute is supported or 0 if not. It
can be used like this:
.. code-block:: c++
#ifndef __has_attribute // Optional of course.
#define __has_attribute(x) 0 // Compatibility with non-clang compilers.
#endif
...
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((always_inline))
#else
#define ALWAYS_INLINE
#endif
...
The attribute name can also be specified with a preceding and following ``__``
(double underscore) to avoid interference from a macro with the same name. For
instance, ``__always_inline__`` can be used instead of ``always_inline``.
Include File Checking Macros
============================
Not all developments systems have the same include files. The
:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
you to check for the existence of an include file before doing a possibly
failing ``#include`` directive.
.. _langext-__has_include:
``__has_include``
-----------------
This function-like macro takes a single file name string argument that is the
name of an include file. It evaluates to 1 if the file can be found using the
include paths, or 0 otherwise:
.. code-block:: c++
// Note the two possible file name string formats.
#if __has_include("myinclude.h") && __has_include(<stdint.h>)
# include "myinclude.h"
#endif
// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include) && __has_include("myinclude.h")
# include "myinclude.h"
#endif
To test for this feature, use ``#if defined(__has_include)``.
.. _langext-__has_include_next:
``__has_include_next``
----------------------
This function-like macro takes a single file name string argument that is the
name of an include file. It is like ``__has_include`` except that it looks for
the second instance of the given file found in the include paths. It evaluates
to 1 if the second instance of the file can be found using the include paths,
or 0 otherwise:
.. code-block:: c++
// Note the two possible file name string formats.
#if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
# include_next "myinclude.h"
#endif
// To avoid problem with non-clang compilers not having this macro.
#if defined(__has_include_next) && __has_include_next("myinclude.h")
# include_next "myinclude.h"
#endif
Note that ``__has_include_next``, like the GNU extension ``#include_next``
directive, is intended for use in headers only, and will issue a warning if
used in the top-level compilation file. A warning will also be issued if an
absolute path is used in the file argument.
``__has_warning``
-----------------
This function-like macro takes a string literal that represents a command line
option for a warning and returns true if that is a valid warning option.
.. code-block:: c++
#if __has_warning("-Wformat")
...
#endif
Builtin Macros
==============
``__BASE_FILE__``
Defined to a string that contains the name of the main input file passed to
Clang.
``__COUNTER__``
Defined to an integer value that starts at zero and is incremented each time
the ``__COUNTER__`` macro is expanded.
``__INCLUDE_LEVEL__``
Defined to an integral value that is the include depth of the file currently
being translated. For the main file, this value is zero.
``__TIMESTAMP__``
Defined to the date and time of the last modification of the current source
file.
``__clang__``
Defined when compiling with Clang
``__clang_major__``
Defined to the major marketing version number of Clang (e.g., the 2 in
2.0.1). Note that marketing version numbers should not be used to check for
language features, as different vendors use different numbering schemes.
Instead, use the :ref:`langext-feature_check`.
``__clang_minor__``
Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
that marketing version numbers should not be used to check for language
features, as different vendors use different numbering schemes. Instead, use
the :ref:`langext-feature_check`.
``__clang_patchlevel__``
Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
``__clang_version__``
Defined to a string that captures the Clang marketing version, including the
Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
.. _langext-vectors:
Vectors and Extended Vectors
============================
Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
OpenCL vector types are created using ``ext_vector_type`` attribute. It
support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
is:
.. code-block:: c++
typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));
float4 foo(float2 a, float2 b) {
float4 c;
c.xz = a;
c.yw = b;
return c;
}
Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
and functions. For example:
.. code-block:: c++
vector float foo(vector int a) {
vector int b;
b = vec_add(a, a) + a;
return (vector float)b;
}
NEON vector types are created using ``neon_vector_type`` and
``neon_polyvector_type`` attributes. For example:
.. code-block:: c++
typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
int8x8_t foo(int8x8_t a) {
int8x8_t v;
v = a;
return v;
}
Vector Literals
---------------
Vector literals can be used to create vectors from a set of scalars, or
vectors. Either parentheses or braces form can be used. In the parentheses
form the number of literal values specified must be one, i.e. referring to a
scalar value, or must match the size of the vector type being created. If a
single scalar literal value is specified, the scalar literal value will be
replicated to all the components of the vector type. In the brackets form any
number of literals can be specified. For example:
.. code-block:: c++
typedef int v4si __attribute__((__vector_size__(16)));
typedef float float4 __attribute__((ext_vector_type(4)));
typedef float float2 __attribute__((ext_vector_type(2)));
v4si vsi = (v4si){1, 2, 3, 4};
float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
vector int vi3 = (vector int)(1, 2); // error
vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
vector int vi5 = (vector int)(1, 2, 3, 4);
float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
Vector Operations
-----------------
The table below shows the support for each operation by vector extension. A
dash indicates that an operation is not accepted according to a corresponding
specification.
============================== ====== ======= === ====
Opeator OpenCL AltiVec GCC NEON
============================== ====== ======= === ====
[] yes yes yes --
unary operators +, -- yes yes yes --
++, -- -- yes yes yes --
+,--,*,/,% yes yes yes --
bitwise operators &,|,^,~ yes yes yes --
>>,<< yes yes yes --
!, &&, || no -- -- --
==, !=, >, <, >=, <= yes yes -- --
= yes yes yes yes
:? yes -- -- --
sizeof yes yes yes yes
============================== ====== ======= === ====
See also :ref:`langext-__builtin_shufflevector`.
Messages on ``deprecated`` and ``unavailable`` Attributes
=========================================================
An optional string message can be added to the ``deprecated`` and
``unavailable`` attributes. For example:
.. code-block:: c++
void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
If the deprecated or unavailable declaration is used, the message will be
incorporated into the appropriate diagnostic:
.. code-block:: c++
harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
[-Wdeprecated-declarations]
explode();
^
Query for this feature with
``__has_extension(attribute_deprecated_with_message)`` and
``__has_extension(attribute_unavailable_with_message)``.
Attributes on Enumerators
=========================
Clang allows attributes to be written on individual enumerators. This allows
enumerators to be deprecated, made unavailable, etc. The attribute must appear
after the enumerator name and before any initializer, like so:
.. code-block:: c++
enum OperationMode {
OM_Invalid,
OM_Normal,
OM_Terrified __attribute__((deprecated)),
OM_AbortOnError __attribute__((deprecated)) = 4
};
Attributes on the ``enum`` declaration do not apply to individual enumerators.
Query for this feature with ``__has_extension(enumerator_attributes)``.
'User-Specified' System Frameworks
==================================
Clang provides a mechanism by which frameworks can be built in such a way that
they will always be treated as being "system frameworks", even if they are not
present in a system framework directory. This can be useful to system
framework developers who want to be able to test building other applications
with development builds of their framework, including the manner in which the
compiler changes warning behavior for system headers.
Framework developers can opt-in to this mechanism by creating a
"``.system_framework``" file at the top-level of their framework. That is, the
framework should have contents like:
.. code-block:: none
.../TestFramework.framework
.../TestFramework.framework/.system_framework
.../TestFramework.framework/Headers
.../TestFramework.framework/Headers/TestFramework.h
...
Clang will treat the presence of this file as an indicator that the framework
should be treated as a system framework, regardless of how it was found in the
framework search path. For consistency, we recommend that such files never be
included in installed versions of the framework.
Availability attribute
======================
Clang introduces the ``availability`` attribute, which can be placed on
declarations to describe the lifecycle of that declaration relative to
operating system versions. Consider the function declaration for a
hypothetical function ``f``:
.. code-block:: c++
void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
The availability attribute states that ``f`` was introduced in Mac OS X 10.4,
deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information
is used by Clang to determine when it is safe to use ``f``: for example, if
Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()``
succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call
succeeds but Clang emits a warning specifying that the function is deprecated.
Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
fails because ``f()`` is no longer available.
The availablility attribute is a comma-separated list starting with the
platform name and then including clauses specifying important milestones in the
declaration's lifetime (in any order) along with additional information. Those
clauses can be:
introduced=\ *version*
The first version in which this declaration was introduced.
deprecated=\ *version*
The first version in which this declaration was deprecated, meaning that
users should migrate away from this API.
obsoleted=\ *version*
The first version in which this declaration was obsoleted, meaning that it
was removed completely and can no longer be used.
unavailable
This declaration is never available on this platform.
message=\ *string-literal*
Additional message text that Clang will provide when emitting a warning or
error about use of a deprecated or obsoleted declaration. Useful to direct
users to replacement APIs.
Multiple availability attributes can be placed on a declaration, which may
correspond to different platforms. Only the availability attribute with the
platform corresponding to the target platform will be used; any others will be
ignored. If no availability attribute specifies availability for the current
target platform, the availability attributes are ignored. Supported platforms
are:
``ios``
Apple's iOS operating system. The minimum deployment target is specified by
the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*``
command-line arguments.
``macosx``
Apple's Mac OS X operating system. The minimum deployment target is
specified by the ``-mmacosx-version-min=*version*`` command-line argument.
A declaration can be used even when deploying back to a platform version prior
to when the declaration was introduced. When this happens, the declaration is
`weakly linked
<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_,
as if the ``weak_import`` attribute were added to the declaration. A
weakly-linked declaration may or may not be present a run-time, and a program
can determine whether the declaration is present by checking whether the
address of that declaration is non-NULL.
Checks for Standard Language Features
=====================================
The ``__has_feature`` macro can be used to query if certain standard language
features are enabled. The ``__has_extension`` macro can be used to query if
language features are available as an extension when compiling for a standard
which does not provide them. The features which can be tested are listed here.
C++98
-----
The features listed below are part of the C++98 standard. These features are
enabled by default when compiling C++ code.
C++ exceptions
^^^^^^^^^^^^^^
Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
enabled. For example, compiling code with ``-fno-exceptions`` disables C++
exceptions.
C++ RTTI
^^^^^^^^
Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
example, compiling code with ``-fno-rtti`` disables the use of RTTI.
C++11
-----
The features listed below are part of the C++11 standard. As a result, all
these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
when compiling C++ code.
C++11 SFINAE includes access control
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_access_control_sfinae)`` or
``__has_extension(cxx_access_control_sfinae)`` to determine whether
access-control errors (e.g., calling a private constructor) are considered to
be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
C++11 alias templates
^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_alias_templates)`` or
``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
alias declarations and alias templates is enabled.
C++11 alignment specifiers
^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
determine if support for alignment specifiers using ``alignas`` is enabled.
C++11 attributes
^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
determine if support for attribute parsing with C++11's square bracket notation
is enabled.
C++11 generalized constant expressions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
constant expressions (e.g., ``constexpr``) is enabled.
C++11 ``decltype()``
^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
determine if support for the ``decltype()`` specifier is enabled. C++11's
``decltype`` does not require type-completeness of a function call expression.
Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
support for this feature is enabled.
C++11 default template arguments in function templates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_default_function_template_args)`` or
``__has_extension(cxx_default_function_template_args)`` to determine if support
for default template arguments in function templates is enabled.
C++11 ``default``\ ed functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_defaulted_functions)`` or
``__has_extension(cxx_defaulted_functions)`` to determine if support for
defaulted function definitions (with ``= default``) is enabled.
C++11 delegating constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
delegating constructors is enabled.
C++11 ``deleted`` functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_deleted_functions)`` or
``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
function definitions (with ``= delete``) is enabled.
C++11 explicit conversion functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
``explicit`` conversion functions is enabled.
C++11 generalized initializers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
generalized initializers (using braced lists and ``std::initializer_list``) is
enabled.
C++11 implicit move constructors/assignment operators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
generate move constructors and move assignment operators where needed.
C++11 inheriting constructors
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
inheriting constructors is enabled. Clang does not currently implement this
feature.
C++11 inline namespaces
^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_inline_namespaces)`` or
``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
namespaces is enabled.
C++11 lambdas
^^^^^^^^^^^^^
Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
determine if support for lambdas is enabled.
C++11 local and unnamed types as template arguments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_local_type_template_args)`` or
``__has_extension(cxx_local_type_template_args)`` to determine if support for
local and unnamed types as template arguments is enabled.
C++11 noexcept
^^^^^^^^^^^^^^
Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
determine if support for noexcept exception specifications is enabled.
C++11 in-class non-static data member initialization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
initialization of non-static data members is enabled.
C++11 ``nullptr``
^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
determine if support for ``nullptr`` is enabled.
C++11 ``override control``
^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_override_control)`` or
``__has_extension(cxx_override_control)`` to determine if support for the
override control keywords is enabled.
C++11 reference-qualified functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_reference_qualified_functions)`` or
``__has_extension(cxx_reference_qualified_functions)`` to determine if support
for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
applied to ``*this``) is enabled.
C++11 range-based ``for`` loop
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
determine if support for the range-based for loop is enabled.
C++11 raw string literals
^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
C++11 rvalue references
^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_rvalue_references)`` or
``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
references is enabled.
C++11 ``static_assert()``
^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_static_assert)`` or
``__has_extension(cxx_static_assert)`` to determine if support for compile-time
assertions using ``static_assert`` is enabled.
C++11 type inference
^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
determine C++11 type inference is supported using the ``auto`` specifier. If
this is disabled, ``auto`` will instead be a storage class specifier, as in C
or C++98.
C++11 strongly typed enumerations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_strong_enums)`` or
``__has_extension(cxx_strong_enums)`` to determine if support for strongly
typed, scoped enumerations is enabled.
C++11 trailing return type
^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_trailing_return)`` or
``__has_extension(cxx_trailing_return)`` to determine if support for the
alternate function declaration syntax with trailing return type is enabled.
C++11 Unicode string literals
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
string literals is enabled.
C++11 unrestricted unions
^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
unrestricted unions is enabled.
C++11 user-defined literals
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_user_literals)`` to determine if support for
user-defined literals is enabled.
C++11 variadic templates
^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(cxx_variadic_templates)`` or
``__has_extension(cxx_variadic_templates)`` to determine if support for
variadic templates is enabled.
C11
---
The features listed below are part of the C11 standard. As a result, all these
features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
compiling C code. Additionally, because these features are all
backward-compatible, they are available as extensions in all language modes.
C11 alignment specifiers
^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
if support for alignment specifiers using ``_Alignas`` is enabled.
C11 atomic operations
^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
if support for atomic types using ``_Atomic`` is enabled. Clang also provides
:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
the ``<stdatomic.h>`` operations on ``_Atomic`` types.
C11 generic selections
^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(c_generic_selections)`` or
``__has_extension(c_generic_selections)`` to determine if support for generic
selections is enabled.
As an extension, the C11 generic selection expression is available in all
languages supported by Clang. The syntax is the same as that given in the C11
standard.
In C, type compatibility is decided according to the rules given in the
appropriate standard, but in C++, which lacks the type compatibility rules used
in C, types are considered compatible only if they are equivalent.
C11 ``_Static_assert()``
^^^^^^^^^^^^^^^^^^^^^^^^
Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
to determine if support for compile-time assertions using ``_Static_assert`` is
enabled.
Checks for Type Traits
======================
Clang supports the `GNU C++ type traits
<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
`Microsoft Visual C++ Type traits
<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_. For each
supported type trait ``__X``, ``__has_extension(X)`` indicates the presence of
the type trait. For example:
.. code-block:: c++
#if __has_extension(is_convertible_to)
template<typename From, typename To>
struct is_convertible_to {
static const bool value = __is_convertible_to(From, To);
};
#else
// Emulate type trait
#endif
The following type traits are supported by Clang:
* ``__has_nothrow_assign`` (GNU, Microsoft)
* ``__has_nothrow_copy`` (GNU, Microsoft)
* ``__has_nothrow_constructor`` (GNU, Microsoft)
* ``__has_trivial_assign`` (GNU, Microsoft)
* ``__has_trivial_copy`` (GNU, Microsoft)
* ``__has_trivial_constructor`` (GNU, Microsoft)
* ``__has_trivial_destructor`` (GNU, Microsoft)
* ``__has_virtual_destructor`` (GNU, Microsoft)
* ``__is_abstract`` (GNU, Microsoft)
* ``__is_base_of`` (GNU, Microsoft)
* ``__is_class`` (GNU, Microsoft)
* ``__is_convertible_to`` (Microsoft)
* ``__is_empty`` (GNU, Microsoft)
* ``__is_enum`` (GNU, Microsoft)
* ``__is_interface_class`` (Microsoft)
* ``__is_pod`` (GNU, Microsoft)
* ``__is_polymorphic`` (GNU, Microsoft)
* ``__is_union`` (GNU, Microsoft)
* ``__is_literal(type)``: Determines whether the given type is a literal type
* ``__is_final``: Determines whether the given type is declared with a
``final`` class-virt-specifier.
* ``__underlying_type(type)``: Retrieves the underlying type for a given
``enum`` type. This trait is required to implement the C++11 standard
library.
* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
of type ``totype`` can be assigned to from a value of type ``fromtype`` such
that no non-trivial functions are called as part of that assignment. This
trait is required to implement the C++11 standard library.
* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
value of type ``type`` can be direct-initialized with arguments of types
``argtypes...`` such that no non-trivial functions are called as part of
that initialization. This trait is required to implement the C++11 standard
library.
Blocks
======
The syntax and high level language feature description is in

Dmitri Gribenko
committed
:doc:`BlockLanguageSpec`. Implementation and ABI details for the clang
implementation are in `Block-ABI-Apple.txt <Block-ABI-Apple.txt>`_.
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
Query for this feature with ``__has_extension(blocks)``.
Objective-C Features
====================
Related result types
--------------------
According to Cocoa conventions, Objective-C methods with certain names
("``init``", "``alloc``", etc.) always return objects that are an instance of
the receiving class's type. Such methods are said to have a "related result
type", meaning that a message send to one of these methods will have the same
static type as an instance of the receiver class. For example, given the
following classes:
.. code-block:: objc
@interface NSObject
+ (id)alloc;
- (id)init;
@end
@interface NSArray : NSObject
@end
and this common initialization pattern
.. code-block:: objc
NSArray *array = [[NSArray alloc] init];
the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
``alloc`` implicitly has a related result type. Similarly, the type of the
expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
related result type and its receiver is known to have the type ``NSArray *``.
If neither ``alloc`` nor ``init`` had a related result type, the expressions
would have had type ``id``, as declared in the method signature.
A method with a related result type can be declared by using the type
``instancetype`` as its result type. ``instancetype`` is a contextual keyword
that is only permitted in the result type of an Objective-C method, e.g.
.. code-block:: objc
@interface A
+ (instancetype)constructAnA;
@end
The related result type can also be inferred for some methods. To determine
whether a method has an inferred related result type, the first word in the
camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
and the method will have a related result type if its return type is compatible
with the type of its class and if:
* the first word is "``alloc``" or "``new``", and the method is a class method,
or
* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
and the method is an instance method.
If a method with a related result type is overridden by a subclass method, the
subclass method must also return a type that is compatible with the subclass
type. For example:
.. code-block:: objc
@interface NSString : NSObject
- (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
@end
Related result types only affect the type of a message send or property access
via the given method. In all other respects, a method with a related result
type is treated the same way as method that returns ``id``.
Use ``__has_feature(objc_instancetype)`` to determine whether the
``instancetype`` contextual keyword is available.
Automatic reference counting
----------------------------
Clang provides support for :doc:`automated reference counting
<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
for manual ``retain``/``release``/``autorelease`` message sends. There are two
feature macros associated with automatic reference counting:
``__has_feature(objc_arc)`` indicates the availability of automated reference
counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
automated reference counting also includes support for ``__weak`` pointers to
Objective-C objects.
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Enumerations with a fixed underlying type
-----------------------------------------
Clang provides support for C++11 enumerations with a fixed underlying type
within Objective-C. For example, one can write an enumeration type as:
.. code-block:: c++
typedef enum : unsigned char { Red, Green, Blue } Color;
This specifies that the underlying type, which is used to store the enumeration
value, is ``unsigned char``.
Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
underlying types is available in Objective-C.
Interoperability with C++11 lambdas
-----------------------------------
Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
permitting a lambda to be implicitly converted to a block pointer with the
corresponding signature. For example, consider an API such as ``NSArray``'s
array-sorting method:
.. code-block:: objc
- (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
(^)(id, id)``, and parameters of this type are generally provided with block
literals as arguments. However, one can also use a C++11 lambda so long as it
provides the same signature (in this case, accepting two parameters of type
``id`` and returning an ``NSComparisonResult``):
.. code-block:: objc
NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
@"String 02"];
const NSStringCompareOptions comparisonOptions
= NSCaseInsensitiveSearch | NSNumericSearch |
NSWidthInsensitiveSearch | NSForcedOrderingSearch;
NSLocale *currentLocale = [NSLocale currentLocale];
NSArray *sorted
= [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
NSRange string1Range = NSMakeRange(0, [s1 length]);
return [s1 compare:s2 options:comparisonOptions
range:string1Range locale:currentLocale];
}];
NSLog(@"sorted: %@", sorted);
This code relies on an implicit conversion from the type of the lambda
expression (an unnamed, local class type called the *closure type*) to the
corresponding block pointer type. The conversion itself is expressed by a
conversion operator in that closure type that produces a block pointer with the