Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
conversion operator in that closure type that produces a block pointer with the
same signature as the lambda itself, e.g.,
.. code-block:: objc
operator NSComparisonResult (^)(id, id)() const;
This conversion function returns a new block that simply forwards the two
parameters to the lambda object (which it captures by copy), then returns the
result. The returned block is first copied (with ``Block_copy``) and then
autoreleased. As an optimization, if a lambda expression is immediately
converted to a block pointer (as in the first example, above), then the block
is not copied and autoreleased: rather, it is given the same lifetime as a
block literal written at that point in the program, which avoids the overhead
of copying a block to the heap in the common case.
The conversion from a lambda to a block pointer is only available in
Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
management (autorelease).
Object Literals and Subscripting
--------------------------------
Clang provides support for :doc:`Object Literals and Subscripting
<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
programming patterns, makes programs more concise, and improves the safety of
container creation. There are several feature macros associated with object
literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
availability of array literals; ``__has_feature(objc_dictionary_literals)``
tests the availability of dictionary literals;
``__has_feature(objc_subscripting)`` tests the availability of object
subscripting.
Objective-C Autosynthesis of Properties
---------------------------------------
Clang provides support for autosynthesis of declared properties. Using this
feature, clang provides default synthesis of those properties not declared
@dynamic and not having user provided backing getter and setter methods.
``__has_feature(objc_default_synthesize_properties)`` checks for availability
of this feature in version of clang being used.
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
.. _langext-objc_method_family:
The ``objc_method_family`` attribute
------------------------------------
Many methods in Objective-C have conventional meanings determined by their
selectors. It is sometimes useful to be able to mark a method as having a
particular conventional meaning despite not having the right selector, or as
not having the conventional meaning that its selector would suggest. For these
use cases, we provide an attribute to specifically describe the "method family"
that a method belongs to.
**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``. This
attribute can only be placed at the end of a method declaration:
.. code-block:: objc
- (NSString *)initMyStringValue __attribute__((objc_method_family(none)));
Users who do not wish to change the conventional meaning of a method, and who
merely want to document its non-standard retain and release semantics, should
use the :ref:`retaining behavior attributes <langext-objc-retain-release>`
described below.
Query for this feature with ``__has_attribute(objc_method_family)``.
.. _langext-objc-retain-release:
Objective-C retaining behavior attributes
-----------------------------------------
In Objective-C, functions and methods are generally assumed to follow the
`Cocoa Memory Management
<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
conventions for ownership of object arguments and
return values. However, there are exceptions, and so Clang provides attributes
to allow these exceptions to be documented. This are used by ARC and the
`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
better described using the :ref:`objc_method_family
<langext-objc_method_family>` attribute instead.
**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
``ns_returns_autoreleased``, ``cf_returns_retained``, and
``cf_returns_not_retained`` attributes can be placed on methods and functions
that return Objective-C or CoreFoundation objects. They are commonly placed at
the end of a function prototype or method declaration:
.. code-block:: objc
id foo() __attribute__((ns_returns_retained));
- (NSString *)bar:(int)x __attribute__((ns_returns_retained));
The ``*_returns_retained`` attributes specify that the returned object has a +1
retain count. The ``*_returns_not_retained`` attributes specify that the return
object has a +0 retain count, even if the normal convention for its selector
would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
+0, but is guaranteed to live at least as long as the next flush of an
autorelease pool.
**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
an parameter declaration; they specify that the argument is expected to have a
+1 retain count, which will be balanced in some way by the function or method.
The ``ns_consumes_self`` attribute can only be placed on an Objective-C
method; it specifies that the method expects its ``self`` parameter to have a
+1 retain count, which it will balance in some way.
.. code-block:: objc
void foo(__attribute__((ns_consumed)) NSString *string);
- (void) bar __attribute__((ns_consumes_self));
- (void) baz:(id) __attribute__((ns_consumed)) x;
Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
Query for these features with ``__has_attribute(ns_consumed)``,
``__has_attribute(ns_returns_retained)``, etc.
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
Function Overloading in C
=========================
Clang provides support for C++ function overloading in C. Function overloading
in C is introduced using the ``overloadable`` attribute. For example, one
might provide several overloaded versions of a ``tgsin`` function that invokes
the appropriate standard function computing the sine of a value with ``float``,
``double``, or ``long double`` precision:
.. code-block:: c
#include <math.h>
float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }
Given these declarations, one can call ``tgsin`` with a ``float`` value to
receive a ``float`` result, with a ``double`` to receive a ``double`` result,
etc. Function overloading in C follows the rules of C++ function overloading
to pick the best overload given the call arguments, with a few C-specific
semantics:
* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
floating-point promotion (per C99) rather than as a floating-point conversion
(as in C++).
* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
compatible types.
* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
and ``U`` are compatible types. This conversion is given "conversion" rank.
The declaration of ``overloadable`` functions is restricted to function
declarations and definitions. Most importantly, if any function with a given
name is given the ``overloadable`` attribute, then all function declarations
and definitions with that name (and in that scope) must have the
``overloadable`` attribute. This rule even applies to redeclarations of
functions whose original declaration had the ``overloadable`` attribute, e.g.,
.. code-block:: c
int f(int) __attribute__((overloadable));
float f(float); // error: declaration of "f" must have the "overloadable" attribute
int g(int) __attribute__((overloadable));
int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute
Functions marked ``overloadable`` must have prototypes. Therefore, the
following code is ill-formed:
.. code-block:: c
int h() __attribute__((overloadable)); // error: h does not have a prototype
However, ``overloadable`` functions are allowed to use a ellipsis even if there
are no named parameters (as is permitted in C++). This feature is particularly
useful when combined with the ``unavailable`` attribute:
.. code-block:: c++
void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error
Functions declared with the ``overloadable`` attribute have their names mangled
according to the same rules as C++ function names. For example, the three
``tgsin`` functions in our motivating example get the mangled names
``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively. There are two
caveats to this use of name mangling:
* Future versions of Clang may change the name mangling of functions overloaded
in C, so you should not depend on an specific mangling. To be completely
safe, we strongly urge the use of ``static inline`` with ``overloadable``
functions.
* The ``overloadable`` attribute has almost no meaning when used in C++,
because names will already be mangled and functions are already overloadable.
However, when an ``overloadable`` function occurs within an ``extern "C"``
linkage specification, it's name *will* be mangled in the same way as it
would in C.
Query for this feature with ``__has_extension(attribute_overloadable)``.
Initializer lists for complex numbers in C
==========================================
clang supports an extension which allows the following in C:
.. code-block:: c++
#include <math.h>
#include <complex.h>
complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
This construct is useful because there is no way to separately initialize the
real and imaginary parts of a complex variable in standard C, given that clang
does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
``__imag__`` extensions from gcc, which help in some cases, but are not usable
in static initializers.)
Note that this extension does not allow eliding the braces; the meaning of the
following two lines is different:
.. code-block:: c++
complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
This extension also works in C++ mode, as far as that goes, but does not apply
to the C++ ``std::complex``. (In C++11, list initialization allows the same
syntax to be used with ``std::complex`` with the same meaning.)
Builtin Functions
=================
Clang supports a number of builtin library functions with the same syntax as
GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
``__sync_fetch_and_add``, etc. In addition to the GCC builtins, Clang supports
a number of builtins that GCC does not, which are listed here.
Please note that Clang does not and will not support all of the GCC builtins
for vector operations. Instead of using builtins, you should use the functions
defined in target-specific header files like ``<xmmintrin.h>``, which define
portable wrappers for these. Many of the Clang versions of these functions are
implemented directly in terms of :ref:`extended vector support
<langext-vectors>` instead of builtins, in order to reduce the number of
builtins that we need to implement.
``__builtin_readcyclecounter``
------------------------------
``__builtin_readcyclecounter`` is used to access the cycle counter register (or
a similar low-latency, high-accuracy clock) on those targets that support it.
**Syntax**:
.. code-block:: c++
__builtin_readcyclecounter()
**Example of Use**:
.. code-block:: c++
unsigned long long t0 = __builtin_readcyclecounter();
do_something();
unsigned long long t1 = __builtin_readcyclecounter();
unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
**Description**:
The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
which may be either global or process/thread-specific depending on the target.
As the backing counters often overflow quickly (on the order of seconds) this
should only be used for timing small intervals. When not supported by the
target, the return value is always zero. This builtin takes no arguments and
produces an unsigned long long result.
Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``.
.. _langext-__builtin_shufflevector:
``__builtin_shufflevector``
---------------------------
``__builtin_shufflevector`` is used to express generic vector
permutation/shuffle/swizzle operations. This builtin is also very important
for the implementation of various target-specific header files like
``<xmmintrin.h>``.
**Syntax**:
.. code-block:: c++
__builtin_shufflevector(vec1, vec2, index1, index2, ...)
**Examples**:
.. code-block:: c++
// Identity operation - return 4-element vector V1.
__builtin_shufflevector(V1, V1, 0, 1, 2, 3)
// "Splat" element 0 of V1 into a 4-element result.
__builtin_shufflevector(V1, V1, 0, 0, 0, 0)
// Reverse 4-element vector V1.
__builtin_shufflevector(V1, V1, 3, 2, 1, 0)
// Concatenate every other element of 4-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6)
// Concatenate every other element of 8-element vectors V1 and V2.
__builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
**Description**:
The first two arguments to ``__builtin_shufflevector`` are vectors that have
the same element type. The remaining arguments are a list of integers that
specify the elements indices of the first two vectors that should be extracted
and returned in a new vector. These element indices are numbered sequentially
starting with the first vector, continuing into the second vector. Thus, if
``vec1`` is a 4-element vector, index 5 would refer to the second element of
``vec2``.
The result of ``__builtin_shufflevector`` is a vector with the same element
type as ``vec1``/``vec2`` but that has an element count equal to the number of
indices specified.
Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
``__builtin_unreachable``
-------------------------
``__builtin_unreachable`` is used to indicate that a specific point in the
program cannot be reached, even if the compiler might otherwise think it can.
This is useful to improve optimization and eliminates certain warnings. For
example, without the ``__builtin_unreachable`` in the example below, the
compiler assumes that the inline asm can fall through and prints a "function
declared '``noreturn``' should not return" warning.
**Syntax**:
.. code-block:: c++
__builtin_unreachable()
**Example of use**:
.. code-block:: c++
void myabort(void) __attribute__((noreturn));
void myabort(void) {
asm("int3");
__builtin_unreachable();
}
**Description**:
The ``__builtin_unreachable()`` builtin has completely undefined behavior.
Since it has undefined behavior, it is a statement that it is never reached and
the optimizer can take advantage of this to produce better code. This builtin
takes no arguments and produces a void result.
Query for this feature with ``__has_builtin(__builtin_unreachable)``.
``__sync_swap``
---------------
``__sync_swap`` is used to atomically swap integers or pointers in memory.
**Syntax**:
.. code-block:: c++
type __sync_swap(type *ptr, type value, ...)
**Example of Use**:
.. code-block:: c++
int old_value = __sync_swap(&value, new_value);
**Description**:
The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
atomic intrinsics to allow code to atomically swap the current value with the
new value. More importantly, it helps developers write more efficient and
correct code by avoiding expensive loops around
``__sync_bool_compare_and_swap()`` or relying on the platform specific
implementation details of ``__sync_lock_test_and_set()``. The
``__sync_swap()`` builtin is a full barrier.
.. _langext-__c11_atomic:
__c11_atomic builtins
---------------------
Clang provides a set of builtins which are intended to be used to implement
C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
``_explicit`` form of the corresponding C11 operation, and are named with a
``__c11_`` prefix. The supported operations are:
* ``__c11_atomic_init``
* ``__c11_atomic_thread_fence``
* ``__c11_atomic_signal_fence``
* ``__c11_atomic_is_lock_free``
* ``__c11_atomic_store``
* ``__c11_atomic_load``
* ``__c11_atomic_exchange``
* ``__c11_atomic_compare_exchange_strong``
* ``__c11_atomic_compare_exchange_weak``
* ``__c11_atomic_fetch_add``
* ``__c11_atomic_fetch_sub``
* ``__c11_atomic_fetch_and``
* ``__c11_atomic_fetch_or``
* ``__c11_atomic_fetch_xor``
Non-standard C++11 Attributes
=============================
Clang supports one non-standard C++11 attribute. It resides in the ``clang``
attribute namespace.
The ``clang::fallthrough`` attribute
------------------------------------
The ``clang::fallthrough`` attribute is used along with the
``-Wimplicit-fallthrough`` argument to annotate intentional fall-through
between switch labels. It can only be applied to a null statement placed at a
point of execution between any statement and the next switch label. It is
common to mark these places with a specific comment, but this attribute is
meant to replace comments with a more strict annotation, which can be checked
by the compiler. This attribute doesn't change semantics of the code and can
be used wherever an intended fall-through occurs. It is designed to mimic
control-flow statements like ``break;``, so it can be placed in most places
where ``break;`` can, but only if there are no statements on the execution path
between it and the next switch label.
Here is an example:
.. code-block:: c++
// compile with -Wimplicit-fallthrough
switch (n) {
case 22:
case 33: // no warning: no statements between case labels
f();
case 44: // warning: unannotated fall-through
g();
[[clang::fallthrough]];
case 55: // no warning
if (x) {
h();
break;
}
else {
i();
[[clang::fallthrough]];
}
case 66: // no warning
p();
[[clang::fallthrough]]; // warning: fallthrough annotation does not
// directly precede case label
q();
case 77: // warning: unannotated fall-through
r();
}
Target-Specific Extensions
==========================
Clang supports some language features conditionally on some targets.
X86/X86-64 Language Extensions
------------------------------
The X86 backend has these language extensions:
Memory references off the GS segment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Annotating a pointer with address space #256 causes it to be code generated
relative to the X86 GS segment register, and address space #257 causes it to be
relative to the X86 FS segment. Note that this is a very very low-level
feature that should only be used if you know what you're doing (for example in
an OS kernel).
Here is an example:
.. code-block:: c++
#define GS_RELATIVE __attribute__((address_space(256)))
int foo(int GS_RELATIVE *P) {
return *P;
}
Which compiles to (on X86-32):
.. code-block:: gas
_foo:
movl 4(%esp), %eax
movl %gs:(%eax), %eax
ret
Extensions for Static Analysis

Dmitri Gribenko
committed
==============================
Clang supports additional attributes that are useful for documenting program
invariants and rules for static analysis tools, such as the `Clang Static
Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
in the analyzer's `list of source-level annotations
<http://clang-analyzer.llvm.org/annotations.html>`_.
Extensions for Dynamic Analysis

Dmitri Gribenko
committed
===============================
.. _langext-address_sanitizer:
AddressSanitizer
----------------
Use ``__has_feature(address_sanitizer)`` to check if the code is being built

Dmitri Gribenko
committed
with :doc:`AddressSanitizer`.
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
Use ``__attribute__((no_address_safety_analysis))`` on a function declaration
to specify that address safety instrumentation (e.g. AddressSanitizer) should
not be applied to that function.
Thread-Safety Annotation Checking
=================================
Clang supports additional attributes for checking basic locking policies in
multithreaded programs. Clang currently parses the following list of
attributes, although **the implementation for these annotations is currently in
development.** For more details, see the `GCC implementation
<http://gcc.gnu.org/wiki/ThreadSafetyAnnotation>`_.
``no_thread_safety_analysis``
-----------------------------
Use ``__attribute__((no_thread_safety_analysis))`` on a function declaration to
specify that the thread safety analysis should not be run on that function.
This attribute provides an escape hatch (e.g. for situations when it is
difficult to annotate the locking policy).
``lockable``
------------
Use ``__attribute__((lockable))`` on a class definition to specify that it has
a lockable type (e.g. a Mutex class). This annotation is primarily used to
check consistency.
``scoped_lockable``
-------------------
Use ``__attribute__((scoped_lockable))`` on a class definition to specify that
it has a "scoped" lockable type. Objects of this type will acquire the lock
upon construction and release it upon going out of scope. This annotation is
primarily used to check consistency.
``guarded_var``
---------------
Use ``__attribute__((guarded_var))`` on a variable declaration to specify that
the variable must be accessed while holding some lock.
``pt_guarded_var``
------------------
Use ``__attribute__((pt_guarded_var))`` on a pointer declaration to specify
that the pointer must be dereferenced while holding some lock.
``guarded_by(l)``
-----------------
Use ``__attribute__((guarded_by(l)))`` on a variable declaration to specify
that the variable must be accessed while holding lock ``l``.
``pt_guarded_by(l)``
--------------------
Use ``__attribute__((pt_guarded_by(l)))`` on a pointer declaration to specify
that the pointer must be dereferenced while holding lock ``l``.
``acquired_before(...)``
------------------------
Use ``__attribute__((acquired_before(...)))`` on a declaration of a lockable
variable to specify that the lock must be acquired before all attribute
arguments. Arguments must be lockable type, and there must be at least one
argument.
``acquired_after(...)``
-----------------------
Use ``__attribute__((acquired_after(...)))`` on a declaration of a lockable
variable to specify that the lock must be acquired after all attribute
arguments. Arguments must be lockable type, and there must be at least one
argument.
``exclusive_lock_function(...)``
--------------------------------
Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
to specify that the function acquires all listed locks exclusively. This
attribute takes zero or more arguments: either of lockable type or integers
indexing into function parameters of lockable type. If no arguments are given,
the acquired lock is implicitly ``this`` of the enclosing object.
``shared_lock_function(...)``
-----------------------------
Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
specify that the function acquires all listed locks, although the locks may be
shared (e.g. read locks). This attribute takes zero or more arguments: either
of lockable type or integers indexing into function parameters of lockable
type. If no arguments are given, the acquired lock is implicitly ``this`` of
the enclosing object.
``exclusive_trylock_function(...)``
-----------------------------------
Use ``__attribute__((exclusive_lock_function(...)))`` on a function declaration
to specify that the function will try (without blocking) to acquire all listed
locks exclusively. This attribute takes one or more arguments. The first
argument is an integer or boolean value specifying the return value of a
successful lock acquisition. The remaining arugments are either of lockable
type or integers indexing into function parameters of lockable type. If only
one argument is given, the acquired lock is implicitly ``this`` of the
enclosing object.
``shared_trylock_function(...)``
--------------------------------
Use ``__attribute__((shared_lock_function(...)))`` on a function declaration to
specify that the function will try (without blocking) to acquire all listed
locks, although the locks may be shared (e.g. read locks). This attribute
takes one or more arguments. The first argument is an integer or boolean value
specifying the return value of a successful lock acquisition. The remaining
arugments are either of lockable type or integers indexing into function
parameters of lockable type. If only one argument is given, the acquired lock
is implicitly ``this`` of the enclosing object.
``unlock_function(...)``
------------------------
Use ``__attribute__((unlock_function(...)))`` on a function declaration to
specify that the function release all listed locks. This attribute takes zero
or more arguments: either of lockable type or integers indexing into function
parameters of lockable type. If no arguments are given, the acquired lock is
implicitly ``this`` of the enclosing object.
``lock_returned(l)``
--------------------
Use ``__attribute__((lock_returned(l)))`` on a function declaration to specify
that the function returns lock ``l`` (``l`` must be of lockable type). This
annotation is used to aid in resolving lock expressions.
``locks_excluded(...)``
-----------------------
Use ``__attribute__((locks_excluded(...)))`` on a function declaration to
specify that the function must not be called with the listed locks. Arguments
must be lockable type, and there must be at least one argument.
``exclusive_locks_required(...)``
---------------------------------
Use ``__attribute__((exclusive_locks_required(...)))`` on a function
declaration to specify that the function must be called while holding the
listed exclusive locks. Arguments must be lockable type, and there must be at
least one argument.
``shared_locks_required(...)``
------------------------------
Use ``__attribute__((shared_locks_required(...)))`` on a function declaration
to specify that the function must be called while holding the listed shared
locks. Arguments must be lockable type, and there must be at least one
argument.
Type Safety Checking
====================
Clang supports additional attributes to enable checking type safety properties
that can't be enforced by C type system. Usecases include:
* MPI library implementations, where these attributes enable checking that
buffer type matches the passed ``MPI_Datatype``;
* for HDF5 library there is a similar usecase as MPI;
* checking types of variadic functions' arguments for functions like
``fcntl()`` and ``ioctl()``.
You can detect support for these attributes with ``__has_attribute()``. For
example:
.. code-block:: c++
#if defined(__has_attribute)
# if __has_attribute(argument_with_type_tag) && \
__has_attribute(pointer_with_type_tag) && \
__has_attribute(type_tag_for_datatype)
# define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
/* ... other macros ... */
# endif
#endif
#if !defined(ATTR_MPI_PWT)
# define ATTR_MPI_PWT(buffer_idx, type_idx)
#endif
int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
ATTR_MPI_PWT(1,3);
``argument_with_type_tag(...)``
-------------------------------
Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx,
type_tag_idx)))`` on a function declaration to specify that the function
accepts a type tag that determines the type of some other argument.
``arg_kind`` is an identifier that should be used when annotating all
applicable type tags.
This attribute is primarily useful for checking arguments of variadic functions
(``pointer_with_type_tag`` can be used in most of non-variadic cases).
For example:
.. code-block:: c++
int fcntl(int fd, int cmd, ...)
__attribute__(( argument_with_type_tag(fcntl,3,2) ));
``pointer_with_type_tag(...)``
------------------------------
Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))``
on a function declaration to specify that the function accepts a type tag that
determines the pointee type of some other pointer argument.
For example:
.. code-block:: c++
int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
__attribute__(( pointer_with_type_tag(mpi,1,3) ));
``type_tag_for_datatype(...)``
------------------------------
Clang supports annotating type tags of two forms.
* **Type tag that is an expression containing a reference to some declared
identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a
declaration with that identifier:
.. code-block:: c++
extern struct mpi_datatype mpi_datatype_int
__attribute__(( type_tag_for_datatype(mpi,int) ));
#define MPI_INT ((MPI_Datatype) &mpi_datatype_int)
* **Type tag that is an integral literal.** Introduce a ``static const``
variable with a corresponding initializer value and attach
``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration,
for example:
.. code-block:: c++
#define MPI_INT ((MPI_Datatype) 42)
static const MPI_Datatype mpi_datatype_int
__attribute__(( type_tag_for_datatype(mpi,int) )) = 42
The attribute also accepts an optional third argument that determines how the
expression is compared to the type tag. There are two supported flags:
* ``layout_compatible`` will cause types to be compared according to
layout-compatibility rules (C++11 [class.mem] p 17, 18). This is
implemented to support annotating types like ``MPI_DOUBLE_INT``.
For example:
.. code-block:: c++
/* In mpi.h */
struct internal_mpi_double_int { double d; int i; };
extern struct mpi_datatype mpi_datatype_double_int
__attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));
#define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)
/* In user code */
struct my_pair { double a; int b; };
struct my_pair *buffer;
MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning
struct my_int_pair { int a; int b; }
struct my_int_pair *buffer2;
MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning: actual buffer element
// type 'struct my_int_pair'
// doesn't match specified MPI_Datatype
* ``must_be_null`` specifies that the expression should be a null pointer
constant, for example:
.. code-block:: c++
/* In mpi.h */
extern struct mpi_datatype mpi_datatype_null
__attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
#define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)
/* In user code */
MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL
// was specified but buffer
// is not a null pointer