Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
and ``__attribute__((near))`` attributes on MIPS targets. These attributes may
only be added to function declarations and change the code generated
by the compiler when directly calling the function. The ``near`` attribute
allows calls to the function to be made using the ``jal`` instruction, which
requires the function to be located in the same naturally aligned 256MB
segment as the caller. The ``long_call`` and ``far`` attributes are synonyms
and require the use of a different call sequence that works regardless
of the distance between the functions.
These attributes have no effect for position-independent code.
These attributes take priority over command line switches such
as ``-mlong-calls`` and ``-mno-long-calls``.
micromips (gnu::micromips)
--------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Clang supports the GNU style ``__attribute__((micromips))`` and
``__attribute__((nomicromips))`` attributes on MIPS targets. These attributes
may be attached to a function definition and instructs the backend to generate
or not to generate microMIPS code for that function.
These attributes override the `-mmicromips` and `-mno-micromips` options
on the command line.
no_caller_saved_registers (gnu::no_caller_saved_registers)
----------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", ""
Use this attribute to indicate that the specified function has no
caller-saved registers. That is, all registers are callee-saved except for
registers used for passing parameters to the function or returning parameters
from the function.
The compiler saves and restores any modified registers that were not used for
passing or returning arguments to the function.
The user can call functions specified with the 'no_caller_saved_registers'
attribute from an interrupt handler without saving and restoring all
call-clobbered registers.
Note that 'no_caller_saved_registers' attribute is not a calling convention.
In fact, it only overrides the decision of which registers should be saved by
the caller, but not how the parameters are passed from the caller to the callee.
For example:
.. code-block:: c
__attribute__ ((no_caller_saved_registers, fastcall))
void f (int arg1, int arg2) {
...
}
In this case parameters 'arg1' and 'arg2' will be passed in registers.
In this case, on 32-bit x86 targets, the function 'f' will use ECX and EDX as
register parameters. However, it will not assume any scratch registers and
should save and restore any modified registers except for ECX and EDX.
no_sanitize (clang::no_sanitize)
--------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Use the ``no_sanitize`` attribute on a function declaration to specify
that a particular instrumentation or set of instrumentations should not be
applied to that function. The attribute takes a list of string literals,
which have the same meaning as values accepted by the ``-fno-sanitize=``
flag. For example, ``__attribute__((no_sanitize("address", "thread")))``
specifies that AddressSanitizer and ThreadSanitizer should not be applied
to the function.
See :ref:`Controlling Code Generation <controlling-code-generation>` for a
full list of supported sanitizer flags.
no_sanitize_address (no_address_safety_analysis, gnu::no_address_safety_analysis, gnu::no_sanitize_address)
-----------------------------------------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
.. _langext-address_sanitizer:
Use ``__attribute__((no_sanitize_address))`` on a function declaration to
specify that address safety instrumentation (e.g. AddressSanitizer) should
not be applied to that function.
no_sanitize_memory
------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
.. _langext-memory_sanitizer:
Use ``__attribute__((no_sanitize_memory))`` on a function declaration to
specify that checks for uninitialized memory should not be inserted
(e.g. by MemorySanitizer). The function may still be instrumented by the tool
to avoid false positives in other places.
no_sanitize_thread
------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
.. _langext-thread_sanitizer:
Use ``__attribute__((no_sanitize_thread))`` on a function declaration to
specify that checks for data races on plain (non-atomic) memory accesses should
not be inserted by ThreadSanitizer. The function is still instrumented by the
tool to avoid false positives and provide meaningful stack traces.
no_split_stack (gnu::no_split_stack)
------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
The ``no_split_stack`` attribute disables the emission of the split stack
preamble for a particular function. It has no effect if ``-fsplit-stack``
is not specified.
noalias
-------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"","","","X","", "", ""
The ``noalias`` attribute indicates that the only memory accesses inside
function are loads and stores from objects pointed to by its pointer-typed
arguments, with arbitrary offsets.
nodiscard, warn_unused_result, clang::warn_unused_result, gnu::warn_unused_result
---------------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","X","","", "", "X"
Clang supports the ability to diagnose when the results of a function call
expression are discarded under suspicious circumstances. A diagnostic is
generated when a function or its return type is marked with ``[[nodiscard]]``
(or ``__attribute__((warn_unused_result))``) and the function call appears as a
potentially-evaluated discarded-value expression that is not explicitly cast to
`void`.
.. code-block: c++
struct [[nodiscard]] error_info { /*...*/ };
error_info enable_missile_safety_mode();
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
void launch_missiles();
void test_missiles() {
enable_missile_safety_mode(); // diagnoses
launch_missiles();
}
error_info &foo();
void f() { foo(); } // Does not diagnose, error_info is a reference.
noduplicate (clang::noduplicate)
--------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
The ``noduplicate`` attribute can be placed on function declarations to control
whether function calls to this function can be duplicated or not as a result of
optimizations. This is required for the implementation of functions with
certain special requirements, like the OpenCL "barrier" function, that might
need to be run concurrently by all the threads that are executing in lockstep
on the hardware. For example this attribute applied on the function
"nodupfunc" in the code below avoids that:
.. code-block:: c
void nodupfunc() __attribute__((noduplicate));
// Setting it as a C++11 attribute is also valid
// void nodupfunc() [[clang::noduplicate]];
void foo();
void bar();
nodupfunc();
if (a > n) {
foo();
} else {
bar();
}
gets possibly modified by some optimizations into code similar to this:
.. code-block:: c
if (a > n) {
nodupfunc();
foo();
} else {
nodupfunc();
bar();
}
where the call to "nodupfunc" is duplicated and sunk into the two branches
of the condition.
nomicromips (gnu::nomicromips)
------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Clang supports the GNU style ``__attribute__((micromips))`` and
``__attribute__((nomicromips))`` attributes on MIPS targets. These attributes
may be attached to a function definition and instructs the backend to generate
or not to generate microMIPS code for that function.
These attributes override the `-mmicromips` and `-mno-micromips` options
on the command line.
noreturn
--------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"","X","","","", "", "X"
A function declared as ``[[noreturn]]`` shall not return to its caller. The
compiler will generate a diagnostic for a function declared as ``[[noreturn]]``
that appears to be capable of returning to its caller.
not_tail_called (clang::not_tail_called)
----------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
The ``not_tail_called`` attribute prevents tail-call optimization on statically bound calls. It has no effect on indirect calls. Virtual functions, objective-c methods, and functions marked as ``always_inline`` cannot be marked as ``not_tail_called``.
For example, it prevents tail-call optimization in the following case:
.. code-block:: c
int __attribute__((not_tail_called)) foo1(int);
int foo2(int a) {
return foo1(a); // No tail-call optimization on direct calls.
}
However, it doesn't prevent tail-call optimization in this case:
.. code-block:: c
int __attribute__((not_tail_called)) foo1(int);
int foo2(int a) {
int (*fn)(int) = &foo1;
// not_tail_called has no effect on an indirect call even if the call can be
// resolved at compile time.
return (*fn)(a);
}
Marking virtual functions as ``not_tail_called`` is an error:
.. code-block:: c++
class Base {
public:
// not_tail_called on a virtual function is an error.
[[clang::not_tail_called]] virtual int foo1();
virtual int foo2();
// Non-virtual functions can be marked ``not_tail_called``.
[[clang::not_tail_called]] int foo3();
};
class Derived1 : public Base {
public:
int foo1() override;
// not_tail_called on a virtual function is an error.
[[clang::not_tail_called]] int foo2() override;
};
nothrow (gnu::nothrow)
----------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","X","", "", "X"
Clang supports the GNU style ``__attribute__((nothrow))`` and Microsoft style
``__declspec(nothrow)`` attribute as an equivilent of `noexcept` on function
declarations. This attribute informs the compiler that the annotated function
does not throw an exception. This prevents exception-unwinding. This attribute
is particularly useful on functions in the C Standard Library that are
guaranteed to not throw an exception.
objc_boxable (clang::objc_boxable)
----------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Structs and unions marked with the ``objc_boxable`` attribute can be used
with the Objective-C boxed expression syntax, ``@(...)``.
**Usage**: ``__attribute__((objc_boxable))``. This attribute
can only be placed on a declaration of a trivially-copyable struct or union:
.. code-block:: objc
struct __attribute__((objc_boxable)) some_struct {
int i;
};
union __attribute__((objc_boxable)) some_union {
int i;
float f;
};
typedef struct __attribute__((objc_boxable)) _some_struct some_struct;
// ...
some_struct ss;
NSValue *boxed = @(ss);
objc_method_family (clang::objc_method_family)
----------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Many methods in Objective-C have conventional meanings determined by their
selectors. It is sometimes useful to be able to mark a method as having a
particular conventional meaning despite not having the right selector, or as
not having the conventional meaning that its selector would suggest. For these
use cases, we provide an attribute to specifically describe the "method family"
that a method belongs to.
**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``. This
attribute can only be placed at the end of a method declaration:
.. code-block:: objc
- (NSString *)initMyStringValue __attribute__((objc_method_family(none)));
Users who do not wish to change the conventional meaning of a method, and who
merely want to document its non-standard retain and release semantics, should
use the retaining behavior attributes (``ns_returns_retained``,
``ns_returns_not_retained``, etc).
Query for this feature with ``__has_attribute(objc_method_family)``.
objc_requires_super (clang::objc_requires_super)
------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Some Objective-C classes allow a subclass to override a particular method in a
parent class but expect that the overriding method also calls the overridden
method in the parent class. For these cases, we provide an attribute to
designate that a method requires a "call to ``super``" in the overriding
method in the subclass.
**Usage**: ``__attribute__((objc_requires_super))``. This attribute can only
be placed at the end of a method declaration:
.. code-block:: objc
- (void)foo __attribute__((objc_requires_super));
This attribute can only be applied the method declarations within a class, and
not a protocol. Currently this attribute does not enforce any placement of
where the call occurs in the overriding method (such as in the case of
``-dealloc`` where the call must appear at the end). It checks only that it
exists.
Note that on both OS X and iOS that the Foundation framework provides a
convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this
attribute:
.. code-block:: objc
- (void)foo NS_REQUIRES_SUPER;
This macro is conditionally defined depending on the compiler's support for
this attribute. If the compiler does not support the attribute the macro
expands to nothing.
Operationally, when a method has this annotation the compiler will warn if the
implementation of an override in a subclass does not call super. For example:
.. code-block:: objc
warning: method possibly missing a [super AnnotMeth] call
- (void) AnnotMeth{};
^
objc_runtime_name (clang::objc_runtime_name)
--------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
By default, the Objective-C interface or protocol identifier is used
in the metadata name for that object. The `objc_runtime_name`
attribute allows annotated interfaces or protocols to use the
specified string argument in the object's metadata name instead of the
default name.
**Usage**: ``__attribute__((objc_runtime_name("MyLocalName")))``. This attribute
can only be placed before an @protocol or @interface declaration:
.. code-block:: objc
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
__attribute__((objc_runtime_name("MyLocalName")))
@interface Message
@end
objc_runtime_visible (clang::objc_runtime_visible)
--------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
This attribute specifies that the Objective-C class to which it applies is visible to the Objective-C runtime but not to the linker. Classes annotated with this attribute cannot be subclassed and cannot have categories defined for them.
optnone (clang::optnone)
------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
The ``optnone`` attribute suppresses essentially all optimizations
on a function or method, regardless of the optimization level applied to
the compilation unit as a whole. This is particularly useful when you
need to debug a particular function, but it is infeasible to build the
entire application without optimization. Avoiding optimization on the
specified function can improve the quality of the debugging information
for that function.
This attribute is incompatible with the ``always_inline`` and ``minsize``
attributes.
overloadable (clang::overloadable)
----------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Clang provides support for C++ function overloading in C. Function overloading
in C is introduced using the ``overloadable`` attribute. For example, one
might provide several overloaded versions of a ``tgsin`` function that invokes
the appropriate standard function computing the sine of a value with ``float``,
``double``, or ``long double`` precision:
.. code-block:: c
#include <math.h>
float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }
Given these declarations, one can call ``tgsin`` with a ``float`` value to
receive a ``float`` result, with a ``double`` to receive a ``double`` result,
etc. Function overloading in C follows the rules of C++ function overloading
to pick the best overload given the call arguments, with a few C-specific
semantics:
* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
floating-point promotion (per C99) rather than as a floating-point conversion
(as in C++).
* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
compatible types.
* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
and ``U`` are compatible types. This conversion is given "conversion" rank.
* If no viable candidates are otherwise available, we allow a conversion from a
pointer of type ``T*`` to a pointer of type ``U*``, where ``T`` and ``U`` are
incompatible. This conversion is ranked below all other types of conversions.
Please note: ``U`` lacking qualifiers that are present on ``T`` is sufficient
for ``T`` and ``U`` to be incompatible.
The declaration of ``overloadable`` functions is restricted to function
declarations and definitions. If a function is marked with the ``overloadable``
attribute, then all declarations and definitions of functions with that name,
except for at most one (see the note below about unmarked overloads), must have
the ``overloadable`` attribute. In addition, redeclarations of a function with
the ``overloadable`` attribute must have the ``overloadable`` attribute, and
redeclarations of a function without the ``overloadable`` attribute must *not*
have the ``overloadable`` attribute. e.g.,
.. code-block:: c
int f(int) __attribute__((overloadable));
float f(float); // error: declaration of "f" must have the "overloadable" attribute
int f(int); // error: redeclaration of "f" must have the "overloadable" attribute
int g(int) __attribute__((overloadable));
int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute
int h(int);
int h(int) __attribute__((overloadable)); // error: declaration of "h" must not
// have the "overloadable" attribute
Functions marked ``overloadable`` must have prototypes. Therefore, the
following code is ill-formed:
.. code-block:: c
int h() __attribute__((overloadable)); // error: h does not have a prototype
However, ``overloadable`` functions are allowed to use a ellipsis even if there
are no named parameters (as is permitted in C++). This feature is particularly
useful when combined with the ``unavailable`` attribute:
.. code-block:: c++
void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error
Functions declared with the ``overloadable`` attribute have their names mangled
according to the same rules as C++ function names. For example, the three
``tgsin`` functions in our motivating example get the mangled names
``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively. There are two
caveats to this use of name mangling:
* Future versions of Clang may change the name mangling of functions overloaded
in C, so you should not depend on an specific mangling. To be completely
safe, we strongly urge the use of ``static inline`` with ``overloadable``
functions.
* The ``overloadable`` attribute has almost no meaning when used in C++,
because names will already be mangled and functions are already overloadable.
However, when an ``overloadable`` function occurs within an ``extern "C"``
linkage specification, it's name *will* be mangled in the same way as it
would in C.
For the purpose of backwards compatibility, at most one function with the same
name as other ``overloadable`` functions may omit the ``overloadable``
attribute. In this case, the function without the ``overloadable`` attribute
will not have its name mangled.
For example:
.. code-block:: c
// Notes with mangled names assume Itanium mangling.
int f(int);
int f(double) __attribute__((overloadable));
void foo() {
f(5); // Emits a call to f (not _Z1fi, as it would with an overload that
// was marked with overloadable).
f(1.0); // Emits a call to _Z1fd.
}
Support for unmarked overloads is not present in some versions of clang. You may
query for it using ``__has_extension(overloadable_unmarked)``.
Query for this attribute with ``__has_attribute(overloadable)``.
release_capability (release_shared_capability, clang::release_capability, clang::release_shared_capability)
-----------------------------------------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", ""
Marks a function as releasing a capability.
short_call (gnu::short_call, gnu::near)
---------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Clang supports the ``__attribute__((long_call))``, ``__attribute__((far))``,
``__attribute__((short__call))``, and ``__attribute__((near))`` attributes
on MIPS targets. These attributes may only be added to function declarations
and change the code generated by the compiler when directly calling
the function. The ``short_call`` and ``near`` attributes are synonyms and
allow calls to the function to be made using the ``jal`` instruction, which
requires the function to be located in the same naturally aligned 256MB segment
as the caller. The ``long_call`` and ``far`` attributes are synonyms and
require the use of a different call sequence that works regardless
of the distance between the functions.
These attributes have no effect for position-independent code.
These attributes take priority over command line switches such
as ``-mlong-calls`` and ``-mno-long-calls``.
signal (gnu::signal)
--------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Clang supports the GNU style ``__attribute__((signal))`` attribute on
AVR targets. This attribute may be attached to a function definition and instructs
the backend to generate appropriate function entry/exit code so that it can be used
directly as an interrupt service routine.
Interrupt handler functions defined with the signal attribute do not re-enable interrupts.
target (gnu::target)
--------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
Clang supports the GNU style ``__attribute__((target("OPTIONS")))`` attribute.
This attribute may be attached to a function definition and instructs
the backend to use different code generation options than were passed on the
command line.
The current set of options correspond to the existing "subtarget features" for
the target with or without a "-mno-" in front corresponding to the absence
of the feature, as well as ``arch="CPU"`` which will change the default "CPU"
for the function.
Example "subtarget features" from the x86 backend include: "mmx", "sse", "sse4.2",
"avx", "xop" and largely correspond to the machine specific options handled by
the front end.
try_acquire_capability (try_acquire_shared_capability, clang::try_acquire_capability, clang::try_acquire_shared_capability)
---------------------------------------------------------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", ""
Marks a function that attempts to acquire a capability. This function may fail to
actually acquire the capability; they accept a Boolean value determining
whether acquiring the capability means success (true), or failing to acquire
the capability means success (false).
xray_always_instrument (clang::xray_always_instrument), xray_never_instrument (clang::xray_never_instrument), xray_log_args (clang::xray_log_args)
--------------------------------------------------------------------------------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
``__attribute__((xray_always_instrument))`` or ``[[clang::xray_always_instrument]]`` is used to mark member functions (in C++), methods (in Objective C), and free functions (in C, C++, and Objective C) to be instrumented with XRay. This will cause the function to always have space at the beginning and exit points to allow for runtime patching.
Conversely, ``__attribute__((xray_never_instrument))`` or ``[[clang::xray_never_instrument]]`` will inhibit the insertion of these instrumentation points.
If a function has neither of these attributes, they become subject to the XRay heuristics used to determine whether a function should be instrumented or otherwise.
``__attribute__((xray_log_args(N)))`` or ``[[clang::xray_log_args(N)]]`` is used to preserve N function arguments for the logging function. Currently, only N==1 is supported.
xray_always_instrument (clang::xray_always_instrument), xray_never_instrument (clang::xray_never_instrument), xray_log_args (clang::xray_log_args)
--------------------------------------------------------------------------------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
``__attribute__((xray_always_instrument))`` or ``[[clang::xray_always_instrument]]`` is used to mark member functions (in C++), methods (in Objective C), and free functions (in C, C++, and Objective C) to be instrumented with XRay. This will cause the function to always have space at the beginning and exit points to allow for runtime patching.
Conversely, ``__attribute__((xray_never_instrument))`` or ``[[clang::xray_never_instrument]]`` will inhibit the insertion of these instrumentation points.
If a function has neither of these attributes, they become subject to the XRay heuristics used to determine whether a function should be instrumented or otherwise.
``__attribute__((xray_log_args(N)))`` or ``[[clang::xray_log_args(N)]]`` is used to preserve N function arguments for the logging function. Currently, only N==1 is supported.
Variable Attributes
===================
dllexport (gnu::dllexport)
--------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","X","", "", "X"
The ``__declspec(dllexport)`` attribute declares a variable, function, or
Objective-C interface to be exported from the module. It is available under the
``-fdeclspec`` flag for compatibility with various compilers. The primary use
is for COFF object files which explicitly specify what interfaces are available
for external use. See the dllexport_ documentation on MSDN for more
information.
.. _dllexport: https://msdn.microsoft.com/en-us/library/3y1sfaz2.aspx
dllimport (gnu::dllimport)
--------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","X","", "", "X"
The ``__declspec(dllimport)`` attribute declares a variable, function, or
Objective-C interface to be imported from an external module. It is available
under the ``-fdeclspec`` flag for compatibility with various compilers. The
primary use is for COFF object files which explicitly specify what interfaces
are imported from external modules. See the dllimport_ documentation on MSDN
for more information.
.. _dllimport: https://msdn.microsoft.com/en-us/library/3y1sfaz2.aspx
init_seg
--------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"","","","","", "X", ""
The attribute applied by ``pragma init_seg()`` controls the section into
which global initialization function pointers are emitted. It is only
available with ``-fms-extensions``. Typically, this function pointer is
emitted into ``.CRT$XCU`` on Windows. The user can change the order of
initialization by using a different section name with the same
``.CRT$XC`` prefix and a suffix that sorts lexicographically before or
after the standard ``.CRT$XCU`` sections. See the init_seg_
documentation on MSDN for more information.
.. _init_seg: http://msdn.microsoft.com/en-us/library/7977wcck(v=vs.110).aspx
maybe_unused, unused, gnu::unused
---------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","X","","", "", ""
When passing the ``-Wunused`` flag to Clang, entities that are unused by the
program may be diagnosed. The ``[[maybe_unused]]`` (or
``__attribute__((unused))``) attribute can be used to silence such diagnostics
when the entity cannot be removed. For instance, a local variable may exist
solely for use in an ``assert()`` statement, which makes the local variable
unused when ``NDEBUG`` is defined.
The attribute may be applied to the declaration of a class, a typedef, a
variable, a function or method, a function parameter, an enumeration, an
enumerator, a non-static data member, or a label.
.. code-block: c++
#include <cassert>
[[maybe_unused]] void f([[maybe_unused]] bool thing1,
[[maybe_unused]] bool thing2) {
[[maybe_unused]] bool b = thing1 && thing2;
assert(b);
}
nodebug (gnu::nodebug)
----------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
The ``nodebug`` attribute allows you to suppress debugging information for a
function or method, or for a variable that is not a parameter or a non-static
data member.
noescape (clang::noescape)
--------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
``noescape`` placed on a function parameter of a pointer type is used to inform
the compiler that the pointer cannot escape: that is, no reference to the object
the pointer points to that is derived from the parameter value will survive
after the function returns. Users are responsible for making sure parameters
annotated with ``noescape`` do not actuallly escape.
For example:
.. code-block:: c
int *gp;
void nonescapingFunc(__attribute__((noescape)) int *p) {
*p += 100; // OK.
}
void escapingFunc(__attribute__((noescape)) int *p) {
gp = p; // Not OK.
}
Additionally, when the parameter is a `block pointer
<https://clang.llvm.org/docs/BlockLanguageSpec.html>`, the same restriction
applies to copies of the block. For example:
.. code-block:: c
typedef void (^BlockTy)();
BlockTy g0, g1;
void nonescapingFunc(__attribute__((noescape)) BlockTy block) {
block(); // OK.
}
void escapingFunc(__attribute__((noescape)) BlockTy block) {
g0 = block; // Not OK.
g1 = Block_copy(block); // Not OK either.
}
nosvm
-----
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","","","","", "", "X"
OpenCL 2.0 supports the optional ``__attribute__((nosvm))`` qualifier for
pointer variable. It informs the compiler that the pointer does not refer
to a shared virtual memory region. See OpenCL v2.0 s6.7.2 for details.
Since it is not widely used and has been removed from OpenCL 2.1, it is ignored
by Clang.
pass_object_size (clang::pass_object_size)
------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
.. Note:: The mangling of functions with parameters that are annotated with
``pass_object_size`` is subject to change. You can get around this by
using ``__asm__("foo")`` to explicitly name your functions, thus preserving
your ABI; also, non-overloadable C functions with ``pass_object_size`` are
not mangled.
The ``pass_object_size(Type)`` attribute can be placed on function parameters to
instruct clang to call ``__builtin_object_size(param, Type)`` at each callsite
of said function, and implicitly pass the result of this call in as an invisible
argument of type ``size_t`` directly after the parameter annotated with
``pass_object_size``. Clang will also replace any calls to
``__builtin_object_size(param, Type)`` in the function by said implicit
parameter.
Example usage:
.. code-block:: c
int bzero1(char *const p __attribute__((pass_object_size(0))))
__attribute__((noinline)) {
int i = 0;
for (/**/; i < (int)__builtin_object_size(p, 0); ++i) {
p[i] = 0;
}
return i;
}
int main() {
char chars[100];
int n = bzero1(&chars[0]);
assert(n == sizeof(chars));
return 0;
}
If successfully evaluating ``__builtin_object_size(param, Type)`` at the
callsite is not possible, then the "failed" value is passed in. So, using the
definition of ``bzero1`` from above, the following code would exit cleanly:
.. code-block:: c
int main2(int argc, char *argv[]) {
int n = bzero1(argv);
assert(n == -1);
return 0;
}
``pass_object_size`` plays a part in overload resolution. If two overload
candidates are otherwise equally good, then the overload with one or more
parameters with ``pass_object_size`` is preferred. This implies that the choice
between two identical overloads both with ``pass_object_size`` on one or more
parameters will always be ambiguous; for this reason, having two such overloads
is illegal. For example:
.. code-block:: c++
#define PS(N) __attribute__((pass_object_size(N)))
// OK
void Foo(char *a, char *b); // Overload A
// OK -- overload A has no parameters with pass_object_size.
void Foo(char *a PS(0), char *b PS(0)); // Overload B
// Error -- Same signature (sans pass_object_size) as overload B, and both
// overloads have one or more parameters with the pass_object_size attribute.
void Foo(void *a PS(0), void *b);
// OK
void Bar(void *a PS(0)); // Overload C
// OK
void Bar(char *c PS(1)); // Overload D
void main() {
char known[10], *unknown;
Foo(unknown, unknown); // Calls overload B
Foo(known, unknown); // Calls overload B
Foo(unknown, known); // Calls overload B
Foo(known, known); // Calls overload B
Bar(known); // Calls overload D
Bar(unknown); // Calls overload D
}
Currently, ``pass_object_size`` is a bit restricted in terms of its usage:
* Only one use of ``pass_object_size`` is allowed per parameter.
* It is an error to take the address of a function with ``pass_object_size`` on
any of its parameters. If you wish to do this, you can create an overload
without ``pass_object_size`` on any parameters.
* It is an error to apply the ``pass_object_size`` attribute to parameters that
are not pointers. Additionally, any parameter that ``pass_object_size`` is
applied to must be marked ``const`` at its function's definition.
require_constant_initialization (clang::require_constant_initialization)
------------------------------------------------------------------------
.. csv-table:: Supported Syntaxes
:header: "GNU", "C++11", "C2x", "__declspec", "Keyword", "Pragma", "Pragma clang attribute"
"X","X","","","", "", "X"
This attribute specifies that the variable to which it is attached is intended
to have a `constant initializer <http://en.cppreference.com/w/cpp/language/constant_initialization>`_
according to the rules of [basic.start.static]. The variable is required to
have static or thread storage duration. If the initialization of the variable
is not a constant initializer an error will be produced. This attribute may
only be used in C++.
Note that in C++03 strict constant expression checking is not done. Instead
the attribute reports if Clang can emit the variable as a constant, even if it's
not technically a 'constant initializer'. This behavior is non-portable.