//===----------------------------------------------------------------------===// // C Language Family Front-end //===----------------------------------------------------------------------===// Welcome to Clang. This is a compiler front-end for the C family of languages (C, C++, Objective-C, and Objective-C++) which is built as part of the LLVM compiler infrastructure project. Unlike many other compiler frontends, Clang is useful for a number of things beyond just compiling code: we intend for Clang to be host to a number of different source-level tools. One example of this is the Clang Static Analyzer. If you're interested in more (including how to build Clang) it is best to read the relevant web sites. Here are some pointers: Information on Clang: http://clang.llvm.org/ Building and using Clang: http://clang.llvm.org/get_started.html Clang Static Analyzer: http://clang-analyzer.llvm.org/ Information on the LLVM project: http://llvm.org/ If you have questions or comments about Clang, a great place to discuss them is on the Clang development mailing list: http://lists.cs.uiuc.edu/mailman/listinfo/cfe-dev If you find a bug in Clang, please file it in the LLVM bug tracker: http://llvm.org/bugs/
Bill Schmidt
authored
This patch adds support for the following new instructions in the Power ISA 2.07: vpksdss vpksdus vpkudus vpkudum vupkhsw vupklsw These instructions are available through the vec_packs, vec_packsu, vec_unpackh, and vec_unpackl built-in interfaces. These are lane-sensitive instructions, so the built-ins have different implementations for big- and little-endian, and the instructions must be marked as killing the vector swap optimization for now. The first three instructions perform saturating pack operations. The fourth performs a modulo pack operation, which means it can be represented with a vector shuffle, and conversely the appropriate vector shuffles may cause this instruction to be generated. The other instructions are only generated via built-in support for now. I noticed during patch preparation that the macro __VSX__ was not previously predefined when the power8-vector or direct-move features are requested. This is an error, and I've corrected that here as well. Appropriate tests have been added. There is a companion patch to llvm for the rest of this support. git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@237500 91177308-0d34-0410-b5e6-96231b3b80d8