Newer
Older
// (c) bernhard schupp 1997 - 1998
// modifications for dune interface
// (c) Robet Kloefkorn 2004 - 2005
#ifndef _GITTER_PLL_STI_CC_
#define _GITTER_PLL_STI_CC_
#ifdef IBM_XLC
#define _ANSI_HEADER
#endif
#include <assert.h>
#include <time.h>
#include <stdio.h>
#include <sys/types.h>
#include <malloc.h>
#ifdef _ANSI_HEADER
using namespace std;
#include <iostream>
#include <fstream>

Robert Klöfkorn
committed
#include <sstream>
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#include <iterator>
#include <functional>
#include <algorithm>
#include <numeric>
#else
#include <iostream.h>
#include <fstream.h>
#include <strstream.h>
#include <iterator.h>
#include <function.h>
#include <algo.h>
#endif
#include "gitter_pll_sti.h"
#include "walk.h"
int __STATIC_myrank = -1 ;
int __STATIC_turn = -1 ;
int __STATIC_phase = -1 ;
pair < IteratorSTI < GitterPll :: vertex_STI > *, IteratorSTI < GitterPll :: vertex_STI > *> GitterPll ::
iteratorTT (const GitterPll :: vertex_STI *, int l) {
vector < IteratorSTI < vertex_STI > * > _iterators_inner, _iterators_outer ;
_iterators_inner.push_back (new AccessIteratorTT < vertex_STI > :: InnerHandle (containerPll (), l)) ;
_iterators_outer.push_back (new AccessIteratorTT < vertex_STI > :: OuterHandle (containerPll (), l)) ;
{
AccessIteratorTT < hedge_STI > :: InnerHandle mie (containerPll (), l) ;
AccessIteratorTT < hedge_STI > :: OuterHandle moe (containerPll (), l) ;
Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > lie (mie) ;
Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > loe (moe) ;
_iterators_inner.push_back (new Wrapper < Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (lie)) ;
_iterators_outer.push_back (new Wrapper < Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (loe)) ;
}
{
AccessIteratorTT < hface_STI > :: InnerHandle mfi (containerPll (), l) ;
AccessIteratorTT < hface_STI > :: OuterHandle mfo (containerPll (), l) ;
{
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > > lfi (mfi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > > lfo (mfo) ;
_iterators_inner.push_back (new Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > >, InternalVertex > (lfi)) ;
_iterators_outer.push_back (new Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > >, InternalVertex > (lfo)) ;
}
{
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > lfi (mfi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > lfo (mfo) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > dlfi (lfi) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > dlfo (lfo) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > vdlfi (dlfi) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > vdlfo (dlfo) ;
_iterators_inner.push_back (new Wrapper < Insert < Wrapper <
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (vdlfi)) ;
_iterators_outer.push_back (new Wrapper <
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (vdlfo)) ;
}
}
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new VectorAlign < vertex_STI > (_iterators_inner), new VectorAlign < vertex_STI > (_iterators_outer)) ;
}
pair < IteratorSTI < GitterPll :: hedge_STI > *, IteratorSTI < GitterPll :: hedge_STI > * > GitterPll ::
iteratorTT (const GitterPll :: hedge_STI * fakep, int l)
{
// fakerule is only for type determination
is_leaf < hedge_STI > * rule = 0;
// see gitter_pll_sti.h
return createEdgeIteratorTT(rule,l);
}
pair < IteratorSTI < GitterPll :: hface_STI > *, IteratorSTI < GitterPll :: hface_STI > *>
GitterPll :: iteratorTT (const GitterPll :: hface_STI *, int l)
{
is_leaf< hface_STI > rule;
return this->createFaceIteratorTT(rule, l);
}
void GitterPll :: printSizeTT () {
cout << "\n GitterPll :: printSizeTT () \n\n" ;
mpAccess ().printLinkage (cout) ;
cout << endl ;
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < vertex_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " vertices: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < hedge_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " edges: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < hface_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " faces: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
}}
return ;
}
void GitterPll :: printsize () {
const int me = mpAccess ().myrank (), np = mpAccess ().psize (), nl = mpAccess ().nlinks () ;
if (debugOption (10)) Gitter :: printsize () ;
vector < int > n ;
{
int sum = 0 ;
for (int i = 0 ; i < nl ; i ++)
sum += LeafIteratorTT < vertex_STI > (*this, i).outer ().size () ;
n.push_back (LeafIterator < vertex_STI > (*this)->size() - sum) ;
}
{
int sum = 0 ;
for (int i = 0 ; i < nl ; i ++)
sum += LeafIteratorTT < hedge_STI > (*this, i).outer ().size () ;
n.push_back (LeafIterator < hedge_STI > (*this)->size() - sum) ;
}
int sumCutFaces = 0 ;
{
int sum = 0 ;
for (int i = 0 ; i < nl ; i ++) {
LeafIteratorTT < hface_STI > w (*this, i) ;
sum += w.outer ().size () ;
sumCutFaces += w.outer ().size () ;
sumCutFaces += w.inner ().size () ;
}
n.push_back (LeafIterator < hface_STI > (*this)->size() - sum) ;
}
n.push_back (LeafIterator < helement_STI > (*this)->size()) ;
n.push_back (LeafIterator < hbndseg_STI > (*this)->size() - sumCutFaces) ;
vector < vector < int > > in = mpAccess ().gcollect (n) ;
if (me == 0) {
int nv = 0, nd = 0, nf = 0, ne = 0, nb = 0 ;
for (int i = 0 ; i < np ; i ++ ) {
nv += (in [i])[0] ;
nd += (in [i])[1] ;
nf += (in [i])[2] ;
ne += (in [i])[3] ;
nb += (in [i])[4] ;
}
cout << "\n GitterPll :: printSize () : \n\n" ;
cout << " - Elements ......... " << ne << "\n" ;
cout << " - Boundaries ....... " << nb << "\n" ;
cout << " - Faces ............ " << nf << "\n" ;
cout << " - Edges ............ " << nd << "\n" ;
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
cout << " - Vertices ......... " << nv << "\n" ;
cout << endl ;
}
return ;
}
void GitterPll :: fullIntegrityCheck () {
int start = clock () ;
Gitter :: fullIntegrityCheck () ;
containerPll().fullIntegrityCheck (mpAccess ()) ;
if (debugOption (0)) {
cout << "**INFO GitterPll :: fullIntegrityCheck () used: " << (float)((float)(clock() - start)/(float)(CLOCKS_PER_SEC)) << " sec." << endl ;
}
return ;
}
void GitterPll :: backupCMode (const char * path, const char * file) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backupCMode (const char * = \""
<< (path ? path : "null") << ", const char * = \""
<< (file ? file : "null") << "\")" << endl, 1) : 1) ;
char * extendedName = new char [strlen (file) + 20] ;
sprintf (extendedName, "%s.%d", file, mpAccess ().myrank ()) ;
Gitter :: backupCMode (path, extendedName) ;
delete [] extendedName ;
return ;
}
void GitterPll :: backupCMode (ostream & out) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backupCMode (ostream &)" << endl, 1) : 1) ;
Gitter :: backupCMode (out) ;
return ;
}
void GitterPll :: backup (const char * path, const char * file) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backup (const char * = \""
<< (path ? path : "null") << ", const char * = \""
<< (file ? file : "null") << "\")" << endl, 1) : 1) ;
char * extendedName = new char [strlen (file) + 20] ;
sprintf (extendedName, "%s.%d", file, mpAccess ().myrank ()) ;
Gitter :: backup (path, extendedName) ;
delete [] extendedName ;
return ;
}
void GitterPll :: backup (ostream & out) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backup (ostream &)" << endl, 1) : 1) ;
Gitter :: backup (out) ;
return ;
}
void GitterPll :: backup (XDRstream_out & out) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backup (ostream &)" << endl, 1) : 1) ;
Gitter :: backup (out) ;
return ;
}
void GitterPll :: restore (const char * path, const char * file) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: restore (const char * = \""
<< path << ", const char * = \""
<< file << "\")" << endl, 1) : 1) ;
char * extendedName = new char [strlen (file) + 20] ;
sprintf (extendedName, "%s.%d", file, mpAccess ().myrank ()) ;
Gitter :: restore (path, extendedName) ;
delete [] extendedName ;
return ;
}
void GitterPll :: restore (istream & in) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: restore (istream &)" << endl, 1) : 1) ;
Gitter :: restore (in) ;
return ;
}
void GitterPll :: restore (XDRstream_in & in) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: restore (istream &)" << endl, 1) : 1) ;
Gitter :: restore (in) ;
return ;
}
pair < IteratorSTI < Gitter :: vertex_STI > *, IteratorSTI < Gitter :: vertex_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const vertex_STI *, int i) {
assert (i < static_cast<int> (_vertexTT.size ()) ) ;
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new listSmartpointer__to__iteratorSTI < vertex_STI > (_vertexTT [i].first),
new listSmartpointer__to__iteratorSTI < vertex_STI > (_vertexTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: vertex_STI > *, IteratorSTI < Gitter :: vertex_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * > & p, int) {
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new listSmartpointer__to__iteratorSTI < vertex_STI > (*(const listSmartpointer__to__iteratorSTI < vertex_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < vertex_STI > (*(const listSmartpointer__to__iteratorSTI < vertex_STI > *)p.second)) ;
}
pair < IteratorSTI < Gitter :: hedge_STI > *, IteratorSTI < Gitter :: hedge_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const hedge_STI *, int i) {
return pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * >
(new listSmartpointer__to__iteratorSTI < hedge_STI > (_hedgeTT [i].first),
new listSmartpointer__to__iteratorSTI < hedge_STI > (_hedgeTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: hedge_STI > *, IteratorSTI < Gitter :: hedge_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * > & p, int) {
return pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * >
(new listSmartpointer__to__iteratorSTI < hedge_STI > (*(const listSmartpointer__to__iteratorSTI < hedge_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < hedge_STI > (*(const listSmartpointer__to__iteratorSTI < hedge_STI > *)p.second)) ;
}
pair < IteratorSTI < Gitter :: hface_STI > *, IteratorSTI < Gitter :: hface_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const hface_STI *, int i) {
return pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * >
(new listSmartpointer__to__iteratorSTI < hface_STI > (_hfaceTT [i].first),
new listSmartpointer__to__iteratorSTI < hface_STI > (_hfaceTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: hface_STI > *, IteratorSTI < Gitter :: hface_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * > & p, int) {
return pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * >
(new listSmartpointer__to__iteratorSTI < hface_STI > (*(const listSmartpointer__to__iteratorSTI < hface_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < hface_STI > (*(const listSmartpointer__to__iteratorSTI < hface_STI > *)p.second)) ;
}
bool GitterPll :: refine () {
assert (debugOption (5) ? (cout << "**INFO GitterPll :: refine () " << endl, 1) : 1) ;
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
bool state = false ;
vector < vector < hedge_STI * > > innerEdges (nl), outerEdges (nl) ;
vector < vector < hface_STI * > > innerFaces (nl), outerFaces (nl) ;
{
// Erst die Zeiger auf alle Fl"achen und Kanten mit paralleler
// Mehrdeutigkeit sichern, da die LeafIteratorTT < . > nach dem
// Verfeinern auf gitter nicht mehr stimmen werden. Die Technik
// ist zul"assig, da keine mehrfache Verfeinerung entstehen kann.
{for (int l = 0 ; l < nl ; l ++) {
LeafIteratorTT < hface_STI > fw (*this,l) ;
LeafIteratorTT < hedge_STI > dw (*this,l) ;
for (fw.outer ().first () ; ! fw.outer().done () ; fw.outer ().next ())
outerFaces [l].push_back (& fw.outer ().item ()) ;
for (fw.inner ().first () ; ! fw.inner ().done () ; fw.inner ().next ())
innerFaces [l].push_back (& fw.inner ().item ()) ;
for (dw.outer ().first () ; ! dw.outer().done () ; dw.outer ().next ())
outerEdges [l].push_back (& dw.outer ().item ()) ;
for (dw.inner ().first () ; ! dw.inner ().done () ; dw.inner ().next ())
innerEdges [l].push_back (& dw.inner ().item ()) ;
}}
// jetzt normal verfeinern und den Status der Verfeinerung
// [unvollst"andige / vollst"andige Verfeinerung] sichern.
__STATIC_phase = 1 ;
state = Gitter :: refine () ;
// Phase des Fl"achenausgleichs an den Schnittfl"achen des
// verteilten Gitters. Weil dort im sequentiellen Fall pseudorekursive
// Methodenaufrufe vorliegen k"onnen, muss solange iteriert werden,
// bis die Situation global station"ar ist.
__STATIC_phase = 2 ;
bool repeat (false) ;
_refineLoops = 0 ;
do {
repeat = false ;
{
vector < ObjectStream > osv (nl) ;
try {
for (int l = 0 ; l < nl ; l ++) {
{for (vector < hface_STI * > :: const_iterator i = outerFaces [l].begin () ;
i != outerFaces [l].end () ; (*i ++)->accessPllX ().accessOuterPllX ().first->getRefinementRequest (osv [l])) ; }
{for (vector < hface_STI * > :: const_iterator i = innerFaces [l].begin () ;
i != innerFaces [l].end () ; (*i ++)->accessPllX ().accessOuterPllX ().first->getRefinementRequest (osv [l])) ; }
}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) AccessPllException in " << __FILE__ << " " << __LINE__ << endl ; abort () ;
}
osv = mpAccess ().exchange (osv) ;
try {
for (int l = 0 ; l < nl ; l ++) {
{for (vector < hface_STI * > :: const_iterator i = innerFaces [l].begin () ;
i != innerFaces [l].end () ; repeat |= (*i ++)->accessPllX ().accessOuterPllX ().first->setRefinementRequest (osv [l])) ; }
{for (vector < hface_STI * > :: const_iterator i = outerFaces [l].begin () ;
i != outerFaces [l].end () ; repeat |= (*i ++)->accessPllX ().accessOuterPllX ().first->setRefinementRequest (osv [l])) ; }
}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) AccessPllException in " << __FILE__ << " " << __LINE__ << endl ; abort () ;
}
}
_refineLoops ++ ;
} while (mpAccess ().gmax (repeat ? 1 : 0)) ;
// Jetzt noch die Kantensituation richtigstellen, es gen"ugt ein Durchlauf,
// weil die Verfeinerung einer Kante keine Fernwirkungen hat. Vorsicht: Die
// Kanten sind bez"uglich ihrer Identifikation sternf"ormig organisiert, d.h.
// es muss die Verfeinerungsinformation einmal am Eigent"umer gesammelt und
// dann wieder zur"ucktransportiert werden, eine einfache L"osung, wie bei
// den Fl"achen (1/1 Beziehung) scheidet aus.
__STATIC_phase = 3 ;
{
vector < ObjectStream > osv (nl) ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hedge_STI * > :: const_iterator i = outerEdges [l].begin () ;
i != outerEdges [l].end () ; (*i ++)->accessPllX ().getRefinementRequest (osv [l])) ;
}
osv = mpAccess ().exchange (osv) ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hedge_STI * > :: const_iterator i = innerEdges [l].begin () ;
i != innerEdges [l].end () ; (*i ++)->accessPllX ().setRefinementRequest (osv [l])) ;
}
} // ~vector < ObjectStream > ...
{
vector < ObjectStream > osv (nl) ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hedge_STI * > :: const_iterator i = innerEdges [l].begin () ;
i != innerEdges [l].end () ; (*i ++)->accessPllX ().getRefinementRequest (osv [l])) ;
}
osv = mpAccess ().exchange (osv) ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hedge_STI * > :: const_iterator i = outerEdges [l].begin () ;
i != outerEdges [l].end () ; (*i ++)->accessPllX ().setRefinementRequest (osv [l])) ;
}
} // ~vector < ObjectStream > ...
}
__STATIC_phase = -1 ;
return state ;
}
void GitterPll :: coarse () {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: coarse () " << endl, 1) : 1) ;
const int nl = mpAccess ().nlinks () ;
{
vector < vector < hedge_STI * > > innerEdges (nl), outerEdges (nl) ;
vector < vector < hface_STI * > > innerFaces (nl), outerFaces (nl) ;
for (int l = 0 ; l < nl ; l ++) {
// Zun"achst werden f"ur alle Links die Zeiger auf Gitterojekte mit
// Mehrdeutigkeit gesichert, die an der Wurzel einer potentiellen
// Vergr"oberungsoperation sitzen -> es sind die Knoten in der Hierarchie,
// deren Kinder alle Bl"atter sind. Genau diese Knoten sollen gegen"uber
// der Vergr"oberung blockiert werden und dann die Vergr"oberung falls
// sie zul"assig ist, sp"ater durchgef"uhrt werden (pending) ;
AccessIteratorTT < hface_STI > :: InnerHandle mfwi (containerPll (),l) ;
AccessIteratorTT < hface_STI > :: OuterHandle mfwo (containerPll (),l) ;
AccessIteratorTT < hedge_STI > :: InnerHandle mdwi (containerPll (),l) ;
AccessIteratorTT < hedge_STI > :: OuterHandle mdwo (containerPll (),l) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Fl"achen "uber den Grobgitterfl"achen. In den Elementen passiert erstmal
// nichts, solange nicht mit mehrfachen Grobgitterelementen gearbeitet wird.
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, childs_are_leafs < hface_STI > > > fwi (mfwi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, childs_are_leafs < hface_STI > > > fwo (mfwo) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Kanten "uber den Grobgitterkanten.
Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dwi (mdwi) ;
Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dwo (mdwo) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Kanten "uber den Grobgitterfl"achen. Diese Konstruktion wird beim Tetraeder-
// gitter notwendig, weil dort keine Aussage der Form:
//
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > efi (mfwi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > efo (mfwo) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > eifi (efi) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > eifo (efo) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dfi (eifi) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dfo (eifo) ;
// Die 'item ()' Resultatwerte (Zeiger) werden in Vektoren gesichert, weil die
// Kriterien die zur Erzeugung der Iteratoren angewendet wurden (Filter) nach
// einer teilweisen Vergr"oberung nicht mehr g"ultig sein werden, d.h. die
// Iterationsobjekte "andern w"ahrend der Vergr"oberung ihre Eigenschaften.
// Deshalb werden sie auch am Ende des Blocks aufgegeben. Der Vektor 'cache'
// ist zul"assig, weil kein Objekt auf das eine Referenz im 'cache' vorliegt
// beseitigt werden kann. Sie sind alle ein Niveau darunter.
for (fwi.first () ; ! fwi.done () ; fwi.next ()) innerFaces [l].push_back (& fwi.item ()) ;
for (fwo.first () ; ! fwo.done () ; fwo.next ()) outerFaces [l].push_back (& fwo.item ()) ;
for (dwo.first () ; ! dwo.done () ; dwo.next ()) outerEdges [l].push_back (& dwo.item ()) ;
for (dfo.first () ; ! dfo.done () ; dfo.next ()) outerEdges [l].push_back (& dfo.item ()) ;
for (dwi.first () ; ! dwi.done () ; dwi.next ()) innerEdges [l].push_back (& dwi.item ()) ;
for (dfi.first () ; ! dfi.done () ; dfi.next ()) innerEdges [l].push_back (& dfi.item ()) ;
}
try {
// Erstmal alles was mehrdeutig ist, gegen die drohende Vergr"oberung sichern.
// Danach werden sukzessive die Fl"achenlocks aufgehoben, getestet und
// eventuell vergr"obert, dann das gleiche Spiel mit den Kanten.
for (int l = 0 ; l < nl ; l ++) {
{for (vector < hedge_STI * > :: iterator i = outerEdges [l].begin () ;
i != outerEdges [l].end () ; (*i ++)->accessPllX ().lockAndTry ()) ; }
{for (vector < hedge_STI * > :: iterator i = innerEdges [l].begin () ;
i != innerEdges [l].end () ; (*i ++)->accessPllX ().lockAndTry ()) ; }
{for (vector < hface_STI * > :: iterator i = outerFaces [l].begin () ;
i != outerFaces [l].end () ; (*i ++)->accessPllX ().accessOuterPllX ().first->lockAndTry ()) ; }
{for (vector < hface_STI * > :: iterator i = innerFaces [l].begin () ;
i != innerFaces [l].end () ; (*i ++)->accessPllX ().accessOuterPllX ().first->lockAndTry ()) ; }
}
// Gitter :: coarse () ist elementorientiert, d.h. die Vergr"oberung auf Fl"achen und
// Kanten wird nur durch Vermittlung eines sich vergr"obernden Knotens in der Element-
// hierarchie angestossen. In allen gegen Vergr"oberung 'gelockten' Fl"achen und Kanten
// wird die angeforderte Operation zur"uckgewiesen, um erst sp"ater von aussen nochmals
// angestossen zu werden.
__STATIC_phase = 4 ;
Gitter :: coarse () ;
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Elementhierarchie oder\n" ;
cerr << " beim locken der Fl\"achen- bzw. Kantenb\"aume aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
try {
// Phase des Fl"achenausgleichs des verteilten Vergr"oberungsalgorithmus
// alle Schnittfl"achenpaare werden daraufhin untersucht, ob eine
// Vergr"oberung in beiden Teilgittern durchgef"uhrt werden darf,
// wenn ja, wird in beiden Teilgittern vergr"obert und der Vollzug
// getestet.
__STATIC_phase = 5 ;
vector < vector < int > > clean (nl) ;
{
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hface_STI * > :: iterator i = outerFaces [l].begin () ; i != outerFaces [l].end () ; i ++)
inout [l].push_back ((*i)->accessPllX ().accessOuterPllX ().first->lockAndTry ()) ;
}
inout = mpAccess ().exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
clean [l] = vector < int > (innerFaces [l].size (), long (true)) ;
vector < int > :: iterator j = clean [l].begin (), k = inout [l].begin () ;
for (vector < hface_STI * > :: iterator i = innerFaces [l].begin () ; i != innerFaces [l].end () ; i ++, j++, k++) {
assert (j != clean [l].end ()) ; assert (k != inout [l].end ()) ;
(*j) &= (*k) && (*i)->accessPllX ().accessOuterPllX ().first->lockAndTry () ;
}
}}
}
{
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: iterator j = clean [l].begin () ;
for (vector < hface_STI * > :: iterator i = innerFaces [l].begin () ; i != innerFaces [l].end () ; i ++, j++) {
inout [l].push_back (*j) ;
(*i)->accessPllX ().accessOuterPllX ().first->unlockAndResume (bool (*j)) ;
}
}}
inout = mpAccess ().exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: iterator j = inout [l].begin () ;
for (vector < hface_STI * > :: iterator i = outerFaces [l].begin () ; i != outerFaces [l].end () ; i ++, j++) {
assert (j != inout [l].end ()) ;
(*i)->accessPllX ().accessOuterPllX ().first->unlockAndResume (bool (*j)) ;
}
}}
}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Fl\"achenb\"aume\n" ;
cerr << " aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
try {
// Phase des Kantenausgleichs im parallelen Vergr"oberungsalgorithmus:
__STATIC_phase = 6 ;
// Weil hier jede Kante nur eindeutig auftreten darf, muss sie in einem
// map als Adresse hinterlegt werden, dann k"onnen die verschiedenen
// Refcounts aus den verschiedenen Links tats"achlich global miteinander
// abgemischt werden. Dazu werden zun"achst alle eigenen Kanten auf ihre
// Vergr"oberbarkeit hin untersucht und dieser Zustand (true = vergr"oberbar
// false = darf nicht vergr"obert werden) im map 'clean' hinterlegt. Dazu
// kommt noch ein zweiter 'bool' Wert, der anzeigt ob die Kante schon ab-
// schliessend vergr"obert wurde oder nicht.
map < hedge_STI *, pair < bool, bool >, less < hedge_STI * > > clean ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hedge_STI * > :: iterator i = innerEdges [l].begin () ; i != innerEdges [l].end () ; i ++)
if (clean.find (*i) == clean.end ()) clean [*i] = pair < bool, bool > ((*i)->accessPllX ().lockAndTry (), true) ;
}
{
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++)
for (vector < hedge_STI * > :: iterator i = outerEdges [l].begin () ; i != outerEdges [l].end () ; i ++)
inout [l].push_back ((*i)->accessPllX ().lockAndTry ()) ;
}
inout = mpAccess ().exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: const_iterator j = inout [l].begin () ;
for (vector < hedge_STI * > :: iterator i = innerEdges [l].begin () ; i != innerEdges [l].end () ; i ++, j++) {
assert (j != inout [l].end ()) ;
assert (clean.find (*i) != clean.end ()) ;
if (*j == false) clean [*i] = pair < bool, bool > (false, clean[*i].second) ;
}
}}
}
{
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
for (vector < hedge_STI * > :: iterator i = innerEdges [l].begin () ; i != innerEdges [l].end () ; i ++) {
assert (clean.find (*i) != clean.end ()) ;
pair < bool, bool > & a = clean [*i] ;
inout [l].push_back (a.first) ;
if (a.second) {
// Wenn wir hier sind, kann die Kante tats"achlich vergr"obert werden, genauer gesagt,
// sie wird es auch und der R"uckgabewert testet den Vollzug der Aktion. Weil aber nur
// einmal vergr"obert werden kann, und die Iteratoren 'innerEdges [l]' aber eventuell
// mehrfach "uber eine Kante hinweglaufen, muss diese Vergr"oberung im map 'clean'
// vermerkt werden. Dann wird kein zweiter Versuch unternommen.
a.second = false ;
(*i)->accessPllX ().unlockAndResume (a.first) ;
assert (b == a.first) ;
}
}
}}
inout = mpAccess ().exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: iterator j = inout [l].begin () ;
for (vector < hedge_STI * > :: iterator i = outerEdges [l].begin () ; i != outerEdges [l].end () ; i ++, j++) {
assert (j != inout [l].end ()) ;
// Selbe Situation wie oben, aber der Eigent"umer der Kante hat mitgeteilt, dass sie
// vergr"obert werden darf und auch wird auf allen Teilgebieten also auch hier. Der
// Vollzug der Vergr"oberung wird durch den R"uckgabewert getestet.
(*i)->accessPllX ().unlockAndResume (bool (*j)) ;
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
assert (b == bool (*j)) ;
}
}}
}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Kantenb\"aume\n" ;
cerr << " aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
}
__STATIC_phase = -1 ;
return ;
}
bool GitterPll :: adapt () {
__STATIC_myrank = mpAccess ().myrank () ;
__STATIC_turn ++ ;
assert (debugOption (20) ? (cout << "**INFO GitterPll :: adapt ()" << endl, 1) : 1) ;
assert (! iterators_attached ()) ;
int start = clock () ;
bool refined = refine () ;
int lap = clock () ;
coarse () ;
int end = clock () ;
if (debugOption (1)) {
float u1 = (float)(lap - start)/(float)(CLOCKS_PER_SEC) ;
float u2 = (float)(end - lap)/(float)(CLOCKS_PER_SEC) ;
float u3 = (float)(end - start)/(float)(CLOCKS_PER_SEC) ;
cout << "**INFO GitterPll :: adapt () [ref (loops)|cse|all] " << u1 << " ("
<< _refineLoops << ") " << u2 << " " << u3 << endl ;
}
notifyGridChanges () ;
loadBalancerGridChangesNotify () ;
return refined;
}
void GitterPll :: MacroGitterPll :: fullIntegrityCheck (MpAccessLocal & mpa) {
const int nl = mpa.nlinks (), me = mpa.myrank () ;
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
try {
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
AccessIteratorTT < hface_STI > :: InnerHandle w (*this,l) ;
for ( w.first () ; ! w.done () ; w.next ()) {
vector < int > i = w.item ().accessPllX ().checkParallelConnectivity () ;
copy (i.begin (), i.end (), back_inserter (inout [l])) ;
}
}}
inout = mpa.exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: const_iterator pos = inout [l].begin () ;
AccessIteratorTT < hface_STI > :: OuterHandle w (*this,l) ;
for (w.first () ; ! w.done () ; w.next ()) {
vector < int > t1 = w.item ().accessPllX ().checkParallelConnectivity () ;
vector < int > t2 (t1.size (), 0) ;
copy (pos, pos + t1.size (), t2.begin ()) ;
pos += t1.size () ;
if (t1 != t2) {
cerr << "fehler an gebiet " << me << " : " ;
#ifdef IBM_XLC
copy (t1.begin (), t1.end (), ostream_iterator < int > (cerr, "-")) ;
#elif defined(_SGI)
copy (t1.begin (), t1.end (), ostream_iterator < int > (cerr, "-")) ;
#else
copy (t1.begin (), t1.end (), ostream_iterator < int , char > (cerr, "-")) ;
#endif
cerr << "\t" ;
#ifdef IBM_XLC
copy (t2.begin (), t2.end (), ostream_iterator < int > (cerr, "-")) ;
#elif defined(_SGI)
copy (t2.begin (), t2.end (), ostream_iterator < int > (cerr, "-")) ;
#else
copy (t2.begin (), t2.end (), ostream_iterator < int , char > (cerr, "-")) ;
#endif
cerr << endl ;
}
}
}}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) Parallel :: AccessPllException entstanden in: " << __FILE__ << " " << __LINE__ << endl ;
}
return ;
}
void GitterPll :: exchangeDynamicState () {
// Die Methode wird jedesmal aufgerufen, wenn sich der dynamische
// Zustand des Gitters ge"andert hat: Verfeinerung und alle Situationen
// die einer "Anderung des statischen Zustands entsprechen. Sie wird in
// diesem Fall NACH dem Update des statischen Zustands aufgerufen, und
// kann demnach von einem korrekten statischen Zustand ausgehen. F"ur
// Methoden die noch h"aufigere Updates erfordern m"ussen diese in der
// Regel hier eingeschleift werden.
{
//struct mallinfo minfo = mallinfo();
//cerr << "Anfang exchangeDynamicState(): Blocks allocated: " << (mallocedsize=(minfo.usmblks + minfo.uordblks)) << endl;
}
{
const int nl = mpAccess ().nlinks () ;
const int start = clock () ;
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
try {
vector < ObjectStream > osv (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
LeafIteratorTT < hface_STI > w (*this,l) ;
for (w.inner ().first () ; ! w.inner ().done () ; w.inner ().next ()) {
pair < ElementPllXIF_t *, int > p = w.inner ().item ().accessPllX ().accessInnerPllX () ;
p.first->writeDynamicState (osv [l], p.second) ;
}
for (w.outer ().first () ; ! w.outer ().done () ; w.outer ().next ()) {
pair < ElementPllXIF_t *, int > p = w.outer ().item ().accessPllX ().accessInnerPllX () ;
p.first->writeDynamicState (osv [l], p.second) ;
}
}}
osv = mpAccess ().exchange (osv) ;
{for (int l = 0 ; l < nl ; l ++ ) {
LeafIteratorTT < hface_STI > w (*this,l) ;
for (w.outer ().first () ; ! w.outer ().done () ; w.outer ().next ()) {
pair < ElementPllXIF_t *, int > p = w.outer ().item ().accessPllX ().accessOuterPllX () ;
p.first->readDynamicState (osv [l], p.second) ;
}
for (w.inner ().first () ; ! w.inner ().done () ; w.inner ().next ()) {
pair < ElementPllXIF_t *, int > p = w.inner ().item ().accessPllX ().accessOuterPllX () ;
p.first->readDynamicState (osv [l], p.second) ;
}
}}
} catch (Parallel :: AccessPllException) {
cerr << " FEHLER Parallel :: AccessPllException entstanden in: " << __FILE__ << " " << __LINE__ << endl ;
}
assert (debugOption (20) ? (cout << "**INFO GitterPll :: exchangeDynamicState () used "
<< (float)(clock () - start)/(float)(CLOCKS_PER_SEC) << " sec. " << endl, 1) : 1 ) ;
}
{
//struct mallinfo minfo = mallinfo();
//cerr << "Ende exchangeDynamicState(): Blocks allocated: " << minfo.usmblks + minfo.uordblks << " "
// << " Blocks used: " << minfo.usmblks + minfo.uordblks - mallocedsize << endl;
}
return ;
}
void GitterPll :: exchangeStaticState () {
// Die Methode wird jedesmal aufgerufen, wenn sich der statische
// Zustand (d.h. der Zustand, der mit dem Makrogitter verbunden ist)
// ge"andert hat: Makrogitteraufbau und Lastvertielung. Der statische
// Zustand darf durch Verfeinerung und h"ohere Methoden nicht beeinflusst
// sein.
const int start = clock () ;
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
try {
const int nl = mpAccess ().nlinks () ;
vector < ObjectStream > osv (nl) ;
{for (int l = 0 ; l < nl ; l ++ ) {
AccessIteratorTT < hface_STI > :: InnerHandle wi (containerPll (),l) ;
AccessIteratorTT < hface_STI > :: OuterHandle wo (containerPll (),l) ;
for (wi.first () ; ! wi.done () ; wi.next ()) {
pair < ElementPllXIF_t *, int > p = wi.item ().accessPllX ().accessInnerPllX () ;
p.first->writeStaticState (osv [l], p.second) ;
}
for (wo.first () ; ! wo.done () ; wo.next ()) {
pair < ElementPllXIF_t *, int > p = wo.item ().accessPllX ().accessInnerPllX () ;
p.first->writeStaticState (osv [l], p.second) ;
}
}}
osv = mpAccess ().exchange (osv) ;
{for (int l = 0 ; l < nl ; l ++) {
AccessIteratorTT < hface_STI > :: InnerHandle wi (containerPll (),l) ;
AccessIteratorTT < hface_STI > :: OuterHandle wo (containerPll (),l) ;
for (wo.first () ; ! wo.done () ; wo.next ()) {
pair < ElementPllXIF_t *, int > p = wo.item ().accessPllX ().accessOuterPllX () ;
p.first->readStaticState (osv [l], p.second) ;
}
for (wi.first () ; ! wi.done () ; wi.next ()) {
pair < ElementPllXIF_t *, int > p = wi.item ().accessPllX ().accessOuterPllX () ;
p.first->readStaticState (osv [l], p.second) ;
}
}}
} catch (Parallel :: AccessPllException) {
cerr << " FEHLER Parallel :: AccessPllException entstanden in: " << __FILE__ << " " << __LINE__ << endl ;
}
assert (debugOption (20) ? (cout << "**INFO GitterPll :: exchangeStaticState () used "
<< (float)(clock () - start)/(float)(CLOCKS_PER_SEC) << " sec. " << endl, 1) : 1 ) ;
return ;
}
void GitterPll :: loadBalancerGridChangesNotify () {
assert (debugOption (20) ? (cout << "**GitterPll :: loadBalancerGridChangesNotify () " << endl, 1) : 1) ;
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
LoadBalancer :: DataBase db ;
{
AccessIterator < hface_STI > :: Handle w (containerPll ()) ;
for (w.first () ; ! w.done () ; w.next ()) w.item ().accessPllX ().ldbUpdateGraphEdge (db) ;
}
{
AccessIterator < helement_STI > :: Handle w (containerPll ()) ;
for (w.first () ; ! w.done () ; w.next ()) w.item ().accessPllX ().ldbUpdateGraphVertex (db) ;
}
bool neu = false ;
{
// Kriterium, wann eine Lastneuverteilung vorzunehmen ist:
//
// load - eigene ElementLast
// mean - mittlere ElementLast
// nload - Lastverh"altnis
double load = db.accVertexLoad () ;
vector < double > v (mpAccess ().gcollect (load)) ;
double mean = accumulate (v.begin (), v.end (), 0.0) / double (np) ;
for (vector < double > :: iterator i = v.begin () ; i != v.end () ; i ++)
neu |= (*i > mean ? (*i > (_ldbOver * mean) ? true : false) : (*i < (_ldbUnder * mean) ? true : false)) ;
}
if (neu) {
if (mpAccess ().gmax (_ldbMethod)) {
repartitionMacroGrid (db) ;
notifyMacroGridChanges () ;
}
}
return ;
}
void GitterPll :: loadBalancerMacroGridChangesNotify () {
// Diese Methode beschreibt die Reaktion des Lastverteilers bzw.
// seiner Datengrundlage auf "Anderungen des Grobgitters, d.h.
// auf "Anderungen in der Grobgitterverteilung, Gr"osse usw.
assert (debugOption (20) ? (cout << "**INFO GitterPll :: loadBalancerMacroGridChangesNotify () " << endl, 1) : 1) ;
int cnt = 0 ;
AccessIterator < helement_STI > :: Handle w (containerPll ()) ;
vector < int > sizes = mpAccess ().gcollect (w.size ()) ;
for (int i = 0 ; i < mpAccess ().myrank () ; cnt += sizes [i++]) ;
for (w.first () ; ! w.done () ; w.next ()) w.item ().accessPllX ().ldbVertexIndex () = cnt ++ ;
return ;
}
void GitterPll :: notifyGridChanges () {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: notifyGridChanges () " << endl, 1) : 1 ) ;
Gitter :: notifyGridChanges () ;
exchangeDynamicState () ;
return ;
}
void GitterPll :: notifyMacroGridChanges () {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: notifyMacroGridChanges () " << endl, 1) : 1 ) ;
Gitter :: notifyMacroGridChanges () ;
Gitter :: notifyGridChanges () ;
containerPll ().identification (mpAccess ()) ;
loadBalancerMacroGridChangesNotify () ;
exchangeStaticState () ;
exchangeDynamicState () ;
return ;
}
GitterPll :: GitterPll () : _ldbOver (1.2), _ldbUnder (0.0), _ldbMethod (LoadBalancer :: DataBase :: METIS_PartGraphKway) {
ifstream in ("lastverteilung.cfg") ;
if (in) {
int i ;
in >> _ldbUnder ;
in >> _ldbOver ;
in >> i;
_ldbMethod = (LoadBalancer :: DataBase :: method) i ;
} else {
/*
if (mpAccess().myrank()==0) {
cerr << "**WARNING (ignored) could'nt open file "
<< "< lastverteilung.cfg > . "
<< "Using default values: " << endl ;
cerr << _ldbUnder << " < [balance] < " << _ldbOver << " "
<< " partitioning method\""
<< LoadBalancer :: DataBase :: methodToString (_ldbMethod)
<< "\"" << endl ;
}
*/
}
return;
#if 0
}
{
ifstream in ("loadbalance.cfg") ;
if (in) {
int i ;
in >> _ldbUnder ;
in >> _ldbOver ;
in >> i;
_ldbMethod = (LoadBalancer :: DataBase :: method) i ;
} else {
cerr << "**WARNING (ignored) could'nt open file < loadbalance.cfg > . The default values will be used." << endl ;
}
cout << "**INFO GitterPll :: GitterPll () " << _ldbUnder << " < [Balance of distribution] < " << _ldbOver << ",\n"
<< " Methode for partitioning \"" << LoadBalancer :: DataBase :: methodToString (_ldbMethod) << "\"" << endl ;
return;
}
return ;
}
#endif