Skip to content
Snippets Groups Projects
Commit 210a4be8 authored by Felix Schindler's avatar Felix Schindler
Browse files

some minor changes

git-svn-id: https://dune.mathematik.uni-freiburg.de/svn/dune-fem-functionals/trunk@9 4028485c-44d9-4cde-a312-5a4635ee2db9
parent 15ea29ca
No related branches found
No related tags found
No related merge requests found
...@@ -17,7 +17,7 @@ MakeIndex= ...@@ -17,7 +17,7 @@ MakeIndex=
QuickBuild= QuickBuild=
[document-settings,item:dune-fem-functionals.tex] [document-settings,item:dune-fem-functionals.tex]
Bookmarks=660 Bookmarks=657
Encoding=UTF-8 Encoding=UTF-8
Highlighting=LaTeX Highlighting=LaTeX
Indentation Mode=normal Indentation Mode=normal
...@@ -36,14 +36,14 @@ order=-1 ...@@ -36,14 +36,14 @@ order=-1
[item:dune-fem-functionals.tex] [item:dune-fem-functionals.tex]
archive=true archive=true
column=26 column=117
encoding=UTF-8 encoding=UTF-8
highlight=LaTeX highlight=LaTeX
line=430 line=366
mode=LaTeX mode=LaTeX
open=true open=true
order=0 order=0
[view-settings,view=0,item:dune-fem-functionals.tex] [view-settings,view=0,item:dune-fem-functionals.tex]
CursorColumn=26 CursorColumn=117
CursorLine=430 CursorLine=366
No preview for this file type
...@@ -228,7 +228,7 @@ ...@@ -228,7 +228,7 @@
F[\alpha v_1 + \beta v_2] = \alpha F[v_1] + \beta F[v_2] F[\alpha v_1 + \beta v_2] = \alpha F[v_1] + \beta F[v_2]
\notag \notag
\end{align} \end{align}
holds for all ${\alpha,\beta \in \R}$ and all ${v_1,v_2\in V}$, $F$ is called a \textnormal{Linear Functional}. holds for all ${\alpha,\beta \in \R}$ and all ${v_1,v_2\in V}$, $F$ is called a \textnormal{linear Functional}.
The vector space The vector space
\begin{align} \begin{align}
V' := \big\{ F : V \rightarrow \R \big| F \text{ is a linear functional } \big\} V' := \big\{ F : V \rightarrow \R \big| F \text{ is a linear functional } \big\}
...@@ -252,7 +252,7 @@ ...@@ -252,7 +252,7 @@
In particular each linear functional implies a constraint. In particular each linear functional implies a constraint.
\begin{definition}[Linear Subspace]\theoremNewline \begin{definition}[Linear subspace]\theoremNewline
\label{definition::analytical_concept::linear_subspace} \label{definition::analytical_concept::linear_subspace}
Let $V$ be a linear function space and $C[\cdot][\cdot]=0$ a constraint on $V$. Then we call Let $V$ be a linear function space and $C[\cdot][\cdot]=0$ a constraint on $V$. Then we call
\begin{align} \begin{align}
...@@ -264,22 +264,22 @@ ...@@ -264,22 +264,22 @@
$V_C$ is a vector space itself, since the constraint functionals $C[i]$ are linear. Typically, $V_C$ becomes the $V_C$ is a vector space itself, since the constraint functionals $C[i]$ are linear. Typically, $V_C$ becomes the
space of test functions in our later problem. space of test functions in our later problem.
\begin{definition}[Affine space]\theoremNewline \begin{definition}[Affine subspace]\theoremNewline
\label{definition::analytical_concept::affine_space} \label{definition::analytical_concept::affine_space}
Let $V$ be a function space, $V_C$ a linear subspace and $g \in V$. Then we call Let $V$ be a function space, $V_C$ a linear subspace and $g \in V$. Then we call
\begin{align} \begin{align}
V_{g} := \{ v+g| \hspace{4pt} v \in V_C \} \subset V V_{g} := \{ v+g| \hspace{4pt} v \in V_C \} \subset V
\end{align} \end{align}
an \textnormal{affine space} with respect to $g$ and $V_C$. an \textnormal{affine subspace} with respect to $g$ and $V_C$.
\end{definition}\theoremEndLine \end{definition}\theoremEndLine
In general, $V_g$ is only a subset of $V$ and not a subspace. It will be the space of solutions in our later In general, $V_g$ is only a subspace of $V$ and not a linear subspace (in the sense, that $V_G$ is not a vector
problem. space itself in general ). It will be the space of solutions in our later problem.
\begin{definition}[Operator]\theoremNewline \begin{definition}[Operator]\theoremNewline
\label{definition::analytical_concept::operator} \label{definition::analytical_concept::operator}
Let $V$ be a linear function space, ${V_C \subset V}$ a linear subspace, $V_C'$ its dual and ${V_g \subset V}$ Let $V$ be a linear function space, ${V_C \subset V}$ a linear subspace, $V_C'$ its dual and ${V_g \subset V}$
an affine space. Then we call an affine subspace. Then we call
\begin{align} \begin{align}
G : V_g \rightarrow V^{\prime}_C G : V_g \rightarrow V^{\prime}_C
\end{align} \end{align}
...@@ -297,7 +297,7 @@ ...@@ -297,7 +297,7 @@
\begin{problem}{Sample problem}\theoremNewline \begin{problem}{Sample problem}\theoremNewline
\label{problem::analytical_concept::sample_problem} \label{problem::analytical_concept::sample_problem}
Let $V$ be a linear space, ${V_C \subset V}$ a linear subspace, ${F \in V_C'}$ a functional and Let $V$ be a linear space, ${V_C \subset V}$ a linear subspace, ${F \in V_C'}$ a functional and
${V_g \subset V}$ an affine space. Find ${u \in V_g}$, such that ${V_g \subset V}$ an affine subspace. Find ${u \in V_g}$, such that
\begin{align*} \begin{align*}
G(u)[v] = F[v] &&\text{for all } v \in V_C. G(u)[v] = F[v] &&\text{for all } v \in V_C.
\end{align*} \end{align*}
...@@ -343,7 +343,7 @@ ...@@ -343,7 +343,7 @@
\begin{align*} \begin{align*}
V_0 = \{ v \in V| \hspace{3pt} C[i][v] = 0 \enspace \forall 1\le i\le \bar{N} \} =: V_C. V_0 = \{ v \in V| \hspace{3pt} C[i][v] = 0 \enspace \forall 1\le i\le \bar{N} \} =: V_C.
\end{align*} \end{align*}
The affine space $V_{g_H}$is given by The affine subspace $V_{g_H}$is given by
\begin{align*} \begin{align*}
V_{g_H} := V_{g_H} :=
\Big\{ \Big\{
...@@ -371,18 +371,15 @@ ...@@ -371,18 +371,15 @@
\subsection{Functionals} \subsection{Functionals}
\begin{remark}[Class tree]\theoremItemizeNewline \begin{remark}[Class tree]\theoremItemizeNewline
\begin{itemize} \begin{tikzpicture}[>=latex']
\item[] \CodeT{Functional} \tikzstyle{boxs} = [draw, %text width=4em,
\item[] \begin{itemize} fill=blue!5, minimum height=2em, rounded corners]
\item[$\rightarrow$] \CodeT{CombinedFunctional} \tikzstyle{boxsG} = [draw, %text width=4em,
\item[$\rightarrow$] \CodeT{LinearFunctional} fill=green!5, minimum height=2em, rounded corners ]
\item[] \begin{itemize} \tikzstyle{line} = [draw,->,thick]
\item[$\rightarrow$] \CodeT{CombinedLinearFunctional} \tikzstyle{lineR} = [draw,<-,thick]
\item[$\rightarrow$] \CodeT{CodimCFunctional} \tikzset{node distance = 3cm}
\item[$\rightarrow$] \CodeT{IntegralFunctional} \end{tikzpicture}
\end{itemize}
\end{itemize}
\end{itemize}
\end{remark} \end{remark}
\begin{class}[\CodeT{Functional}]\theoremNewline \begin{class}[\CodeT{Functional}]\theoremNewline
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment