Newer
Older
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef PACXX_PROJECTSEMINAR_2019_SRC_NEWTON_HH
#define PACXX_PROJECTSEMINAR_2019_SRC_NEWTON_HH
// Shameless modified copy of PDELab::Newton
#include <memory>
#include <dune/common/exceptions.hh>
#include <dune/common/ios_state.hh>
#include <dune/common/parametertree.hh>
namespace PPS
{
// Exception classes used in NewtonSolver
class NewtonError : public Dune::Exception {};
class NewtonDefectError : public NewtonError {};
class NewtonLinearSolverError : public NewtonError {};
class NewtonLineSearchError : public NewtonError {};
class NewtonNotConverged : public NewtonError {};
// Status information of Newton's method
struct NewtonResult : Dune::InverseOperatorResult
double first_defect; // the first defect
double defect; // the final defect
double assembler_time; // Cumulative time for matrix assembly
double linear_solver_time; // Cumulative time for linear solver
int linear_solver_iterations; // Total number of linear iterations
NewtonResult() :
first_defect(0.0), defect(0.0), assembler_time(0.0), linear_solver_time(0.0),
linear_solver_iterations(0) {}
};
template<class GOS, class TrlV, class TstV>
class NewtonBase
{
typedef GOS GridOperator;
typedef TrlV TrialVector;
typedef TstV TestVector;
typedef typename TestVector::field_type RFType;
using Operator = Dune::LinearOperator<TrlV, TstV>;
void setVerbosityLevel(unsigned int verbosity_level)
{
}
//! Set whether the jacobian matrix should be kept across calls to apply().
void setKeepMatrix(bool b)
{
keep_matrix_ = b;
}
//! Return whether the jacobian matrix is kept across calls to apply().
bool keepMatrix() const
{
return keep_matrix_;
}
//! Discard the stored Jacobian matrix.
void discardMatrix()
{
if(op_)
op_.reset();
}
protected:
const GridOperator& gridoperator_;
TrialVector *u_;
std::shared_ptr<TrialVector> z_;
std::shared_ptr<TestVector> r_;
std::shared_ptr<Operator> op_;
Result res_;
unsigned int verbosity_level_;
RFType prev_defect_;
RFType linear_reduction_;
bool reassembled_;
RFType reduction_;
RFType abs_limit_;
bool keep_matrix_;
Dune::ParameterTree operator_params_;
NewtonBase(const GridOperator& go, TrialVector& u)
: gridoperator_(go)
, u_(&u)
, verbosity_level_(1)
, keep_matrix_(true)
NewtonBase(const GridOperator& go)
: gridoperator_(go)
, u_(0)
, verbosity_level_(1)
, keep_matrix_(true)
virtual ~NewtonBase() { }
virtual bool terminate() = 0;
virtual void prepare_step(Operator& op, TestVector& r) = 0;
virtual void line_search(TrialVector& z, TestVector& r) = 0;
virtual void defect(TestVector& r) = 0;
}; // end class NewtonBase
template<class GOS, class S, class TrlV, class TstV>
class NewtonSolver : public virtual NewtonBase<GOS,TrlV,TstV>
{
typedef S Solver;
typedef GOS GridOperator;
typedef TrlV TrialVector;
typedef TstV TestVector;
typedef typename TestVector::field_type RFType;
using Operator = Dune::LinearOperator<TrlV, TstV>;
NewtonSolver(const GridOperator& go, TrialVector& u_, Solver& solver)
, solver_(solver)
, result_valid_(false)
{}
NewtonSolver(const GridOperator& go, Solver& solver)
, solver_(solver)
, result_valid_(false)
{}
void apply();
void apply(TrialVector& u_);
const Result& result() const
{
if (!result_valid_)
DUNE_THROW(NewtonError,
"NewtonSolver::result() called before NewtonSolver::solve()");
return this->res_;
}
protected:
virtual void defect(TestVector& r) override
{
r = 0.0;
this->gridoperator_.residual(*this->u_, r);
if (!std::isfinite(this->res_.defect))
DUNE_THROW(NewtonDefectError,
"NewtonSolver::defect(): Non-linear defect is NaN or Inf");
}
private:
void linearSolve(Operator& op, TrialVector& z, TestVector& r) const
{
if (this->verbosity_level_ >= 4)
std::cout << " Solving linear system..." << std::endl;
z = 0.0;
// If possible tell solver backend to reuse linear system when we did not reassemble.
this->solver_.apply(op, z, r, this->linear_reduction_);
Dune::ios_base_all_saver restorer(std::cout); // store old ios flags
if (!this->solver_.result().converged)
DUNE_THROW(NewtonLinearSolverError,
"NewtonSolver::linearSolve(): Linear solver did not converge "
"in " << this->solver_.result().iterations << " iterations");
if (this->verbosity_level_ >= 4)
std::cout << " linear solver iterations: "
<< std::setw(12) << solver_.result().iterations << std::endl
<< " linear defect reduction: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< solver_.result().reduction << std::endl;
}
Solver& solver_;
bool result_valid_;
}; // end class NewtonSolver
template<class GOS, class S, class TrlV, class TstV>
void NewtonSolver<GOS,S,TrlV,TstV>::apply(TrialVector& u)
template<class GOS, class S, class TrlV, class TstV>
void NewtonSolver<GOS,S,TrlV,TstV>::apply()
{
this->res_.iterations = 0;
this->res_.converged = false;
this->res_.reduction = 1.0;
this->res_.conv_rate = 1.0;
this->res_.elapsed = 0.0;
this->res_.assembler_time = 0.0;
this->res_.linear_solver_time = 0.0;
this->res_.linear_solver_iterations = 0;
result_valid_ = true;
Dune::Timer timer;
try
{
if(!this->r_) {
// std::cout << "=== Setting up residual vector ..." << std::endl;
this->r_ = std::make_shared<TstV>(this->gridoperator_.rangeSize());
}
// residual calculation in member function "defect":
//--------------------------------------------------
// - set residual vector to zero
// - calculate new residual
// - store norm of residual in "this->res_.defect"
this->defect(*this->r_);
this->res_.first_defect = this->res_.defect;
this->prev_defect_ = this->res_.defect;
if (this->verbosity_level_ >= 2)
{
// store old ios flags
Dune::ios_base_all_saver restorer(std::cout);
std::cout << " Initial defect: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.defect << std::endl;
}
if(!this->op_) {
// std::cout << "==== Setting up jacobian matrix ... " << std::endl;
this->op_ = makeOperator<TrlV, TstV>(&this->gridoperator_,
this->operator_params_);
}
if(!this->z_) {
// std::cout << "==== Setting up correction vector ... " << std::endl;
this->z_ = std::make_shared<TrlV>(this->gridoperator_.domainSize());
}
while (!this->terminate())
{
if (this->verbosity_level_ >= 3)
std::cout << " Newton iteration " << this->res_.iterations
<< " --------------------------------" << std::endl;
Dune::Timer assembler_timer;
try
{
// jacobian calculation in member function "prepare_step"
//-------------------------------------------------------
// - if above reassemble threshold
// - set jacobian to zero
// - calculate new jacobian
// - set linear reduction
this->prepare_step(*this->op_,*this->r_);
}
catch (...)
{
this->res_.assembler_time += assembler_timer.elapsed();
throw;
}
double assembler_time = assembler_timer.elapsed();
this->res_.assembler_time += assembler_time;
if (this->verbosity_level_ >= 3)
std::cout << " matrix assembly time: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< assembler_time << std::endl;
Dune::Timer linear_solver_timer;
try
{
// solution of linear system in member function "linearSolve"
//-----------------------------------------------------------
// - set initial guess for correction z to zero
// - call linear solver
this->linearSolve(*this->op_, *this->z_, *this->r_);
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
}
catch (...)
{
this->res_.linear_solver_time += linear_solver_timer.elapsed();
this->res_.linear_solver_iterations += this->solver_.result().iterations;
throw;
}
double linear_solver_time = linear_solver_timer.elapsed();
this->res_.linear_solver_time += linear_solver_time;
this->res_.linear_solver_iterations += this->solver_.result().iterations;
try
{
// line search with correction z
// the undamped version is also integrated in here
this->line_search(*this->z_, *this->r_);
}
catch (NewtonLineSearchError&)
{
if (this->reassembled_)
throw;
if (this->verbosity_level_ >= 3)
std::cout << " line search failed - trying again with reassembled matrix" << std::endl;
continue;
}
this->res_.reduction = this->res_.defect/this->res_.first_defect;
this->res_.iterations++;
this->res_.conv_rate = std::pow(this->res_.reduction, 1.0/this->res_.iterations);
// store old ios flags
Dune::ios_base_all_saver restorer(std::cout);
if (this->verbosity_level_ >= 3)
std::cout << " linear solver time: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< linear_solver_time << std::endl
<< " defect reduction (this iteration):"
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.defect/this->prev_defect_ << std::endl
<< " defect reduction (total): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.reduction << std::endl
<< " new defect: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.defect << std::endl;
if (this->verbosity_level_ == 2)
std::cout << " Newton iteration " << std::setw(2) << this->res_.iterations
<< ". New defect: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.defect
<< ". Reduction (this): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.defect/this->prev_defect_
<< ". Reduction (total): "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.reduction << std::endl;
} // end while
} // end try
catch(...)
{
this->res_.elapsed = timer.elapsed();
throw;
}
this->res_.elapsed = timer.elapsed();
Dune::ios_base_all_saver restorer(std::cout); // store old ios flags
if (this->verbosity_level_ == 1)
std::cout << " Newton converged after " << std::setw(2) << this->res_.iterations
<< " iterations. Reduction: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->res_.reduction
<< " (" << std::setprecision(4) << this->res_.elapsed << "s)"
<< std::endl;
if(!this->keep_matrix_)
this->op_.reset();
template<class GOS, class TrlV, class TstV>
class NewtonTerminate : public virtual NewtonBase<GOS,TrlV,TstV>
{
typedef GOS GridOperator;
typedef TrlV TrialVector;
public:
NewtonTerminate(const GridOperator& go, TrialVector& u_)
, maxit_(40)
, force_iteration_(false)
{
this->reduction_ = 1e-8;
this->abs_limit_ = 1e-12;
}
NewtonTerminate(const GridOperator& go)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
, maxit_(40)
, force_iteration_(false)
{
this->reduction_ = 1e-8;
this->abs_limit_ = 1e-12;
}
void setReduction(RFType reduction)
{
this->reduction_ = reduction;
}
void setMaxIterations(unsigned int maxit)
{
maxit_ = maxit;
}
void setForceIteration(bool force_iteration)
{
force_iteration_ = force_iteration;
}
void setAbsoluteLimit(RFType abs_limit_)
{
this->abs_limit_ = abs_limit_;
}
void setOperatorParams(Dune::ParameterTree operator_params)
{
this->operator_params_ = std::move(operator_params);
}
virtual bool terminate() override
{
if (force_iteration_ && this->res_.iterations == 0)
return false;
this->res_.converged = this->res_.defect < this->abs_limit_
|| this->res_.defect < this->res_.first_defect * this->reduction_;
if (this->res_.iterations >= int(maxit_) && !this->res_.converged)
DUNE_THROW(NewtonNotConverged,
"NewtonTerminate::terminate(): Maximum iteration count reached");
return this->res_.converged;
}
private:
unsigned int maxit_;
bool force_iteration_;
}; // end class NewtonTerminate
template<class GOS, class TrlV, class TstV>
class NewtonPrepareStep : public virtual NewtonBase<GOS,TrlV,TstV>
{
typedef GOS GridOperator;
typedef TrlV TrialVector;
using Operator = Dune::LinearOperator<TrlV, TstV>;
public:
NewtonPrepareStep(const GridOperator& go, TrialVector& u_)
, min_linear_reduction_(1e-3)
, fixed_linear_reduction_(0.0)
, reassemble_threshold_(0.0)
{}
NewtonPrepareStep(const GridOperator& go)
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
, min_linear_reduction_(1e-3)
, fixed_linear_reduction_(0.0)
, reassemble_threshold_(0.0)
{}
/**\brief set the minimal reduction in the linear solver
\note with min_linear_reduction > 0, the linear reduction will be
determined as mininum of the min_linear_reduction and the
linear_reduction needed to achieve second order
Newton convergence. */
void setMinLinearReduction(RFType min_linear_reduction)
{
min_linear_reduction_ = min_linear_reduction;
}
/**\brief set a fixed reduction in the linear solver (overwrites setMinLinearReduction)
\note with fixed_linear_reduction > 0, the linear reduction
rate will always be fixed to min_linear_reduction. */
void setFixedLinearReduction(bool fixed_linear_reduction)
{
fixed_linear_reduction_ = fixed_linear_reduction;
}
/**\brief set a threshold, when the linear operator is reassembled
We allow to keep the linear operator over several newton
iterations. If the reduction in the newton drops below a
given threshold the linear operator is reassembled to ensure
convergence.
*/
void setReassembleThreshold(RFType reassemble_threshold)
{
reassemble_threshold_ = reassemble_threshold;
}
virtual void prepare_step(Operator& op, TstV& ) override
{
this->reassembled_ = false;
if (this->res_.defect/this->prev_defect_ > reassemble_threshold_)
{
if (this->verbosity_level_ >= 3)
std::cout << " Reassembling matrix..." << std::endl;
dynamic_cast<LinearizedOperatorMixin<TrlV>&>(*this->op_).
linearizeAt(*this->u_);
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
this->reassembled_ = true;
}
if (fixed_linear_reduction_ == true)
this->linear_reduction_ = min_linear_reduction_;
else {
// determine maximum defect, where Newton is converged.
RFType stop_defect =
std::max(this->res_.first_defect * this->reduction_,
this->abs_limit_);
/*
To achieve second order convergence of newton
we need a linear reduction of at least
current_defect^2/prev_defect^2.
For the last newton step a linear reduction of
1/10*end_defect/current_defect
is sufficient for convergence.
*/
if ( stop_defect/(10*this->res_.defect) >
this->res_.defect*this->res_.defect/(this->prev_defect_*this->prev_defect_) )
this->linear_reduction_ =
stop_defect/(10*this->res_.defect);
else
this->linear_reduction_ =
std::min(min_linear_reduction_,this->res_.defect*this->res_.defect/(this->prev_defect_*this->prev_defect_));
}
this->prev_defect_ = this->res_.defect;
Dune::ios_base_all_saver restorer(std::cout); // store old ios flags
if (this->verbosity_level_ >= 3)
std::cout << " requested linear reduction: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< this->linear_reduction_ << std::endl;
}
private:
RFType min_linear_reduction_;
bool fixed_linear_reduction_;
RFType reassemble_threshold_;
}; // end class NewtonPrepareStep
template<class GOS, class TrlV, class TstV>
class NewtonLineSearch : public virtual NewtonBase<GOS,TrlV,TstV>
{
typedef GOS GridOperator;
typedef TrlV TrialVector;
typedef TstV TestVector;
typedef typename TestVector::field_type RFType;
public:
enum Strategy {
/** \brief don't do any line search or damping */
noLineSearch,
/** \brief perform a linear search for the optimal damping parameter with multiples of damping
the strategy was described in <a href="http://dx.doi.org/10.1007/BF01406516">[Hackbusch and Reusken, 1989]</a> */
hackbuschReusken,
/** \brief same as hackbuschReusken, but doesn't fail if the best update is still not good enough */
hackbuschReuskenAcceptBest };
NewtonLineSearch(const GridOperator& go, TrialVector& u_)
, strategy_(hackbuschReusken)
, maxit_(10)
, damping_factor_(0.5)
{}
NewtonLineSearch(const GridOperator& go)
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
, strategy_(hackbuschReusken)
, maxit_(10)
, damping_factor_(0.5)
{}
void setLineSearchStrategy(Strategy strategy)
{
strategy_ = strategy;
}
void setLineSearchStrategy(std::string strategy)
{
strategy_ = strategyFromName(strategy);
}
void setLineSearchMaxIterations(unsigned int maxit)
{
maxit_ = maxit;
}
void setLineSearchDampingFactor(RFType damping_factor)
{
damping_factor_ = damping_factor;
}
virtual void line_search(TrialVector& z, TestVector& r) override
{
if ((strategy_ == noLineSearch) || (this->res_.defect < this->abs_limit_))
{
this->u_->axpy(-1.0, z);
this->defect(r);
return;
}
if (this->verbosity_level_ >= 4)
std::cout << " Performing line search..." << std::endl;
RFType lambda = 1.0;
RFType best_lambda = 0.0;
RFType best_defect = this->res_.defect;
TrialVector prev_u(*this->u_);
unsigned int i = 0;
Dune::ios_base_all_saver restorer(std::cout); // store old ios flags
while (1)
{
if (this->verbosity_level_ >= 4)
std::cout << " trying line search damping factor: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< lambda
<< std::endl;
this->u_->axpy(-lambda, z);
try {
this->defect(r);
}
catch (NewtonDefectError&)
{
if (this->verbosity_level_ >= 4)
std::cout << " NaNs detected" << std::endl;
} // ignore NaNs and try again with lower lambda
if (this->res_.defect <= (1.0 - lambda/4) * this->prev_defect_)
{
if (this->verbosity_level_ >= 4)
std::cout << " line search converged" << std::endl;
break;
}
if (this->res_.defect < best_defect)
{
best_defect = this->res_.defect;
best_lambda = lambda;
}
if (++i >= maxit_)
{
if (this->verbosity_level_ >= 4)
std::cout << " max line search iterations exceeded" << std::endl;
switch (strategy_)
{
case hackbuschReusken:
*this->u_ = prev_u;
this->defect(r);
DUNE_THROW(NewtonLineSearchError,
"NewtonLineSearch::line_search(): line search failed, "
"max iteration count reached, "
"defect did not improve enough");
case hackbuschReuskenAcceptBest:
if (best_lambda == 0.0)
{
*this->u_ = prev_u;
this->defect(r);
DUNE_THROW(NewtonLineSearchError,
"NewtonLineSearch::line_search(): line search failed, "
"max iteration count reached, "
"defect did not improve in any of the iterations");
}
if (best_lambda != lambda)
{
*this->u_ = prev_u;
this->u_->axpy(-best_lambda, z);
this->defect(r);
}
break;
case noLineSearch:
break;
}
break;
}
lambda *= damping_factor_;
*this->u_ = prev_u;
}
if (this->verbosity_level_ >= 4)
std::cout << " line search damping factor: "
<< std::setw(12) << std::setprecision(4) << std::scientific
<< lambda << std::endl;
} // end line_search
protected:
/** helper function to get the different strategies from their name */
Strategy strategyFromName(const std::string & s) {
if (s == "noLineSearch")
return noLineSearch;
if (s == "hackbuschReusken")
return hackbuschReusken;
if (s == "hackbuschReuskenAcceptBest")
return hackbuschReuskenAcceptBest;
DUNE_THROW(Dune::Exception, "unknown line search strategy" << s);
}
private:
Strategy strategy_;
unsigned int maxit_;
RFType damping_factor_;
}; // end class NewtonLineSearch
template<class GOS, class S, class TrlV, class TstV = TrlV>
class Newton : public NewtonSolver<GOS,S,TrlV,TstV>
, public NewtonTerminate<GOS,TrlV,TstV>
, public NewtonLineSearch<GOS,TrlV,TstV>
, public NewtonPrepareStep<GOS,TrlV,TstV>
{
typedef GOS GridOperator;
typedef S Solver;
typedef TrlV TrialVector;
public:
Newton(const GridOperator& go, TrialVector& u_, Solver& solver_)
: NewtonBase<GOS,TrlV,TstV>(go,u_)
, NewtonSolver<GOS,S,TrlV,TstV>(go,u_,solver_)
, NewtonTerminate<GOS,TrlV,TstV>(go,u_)
, NewtonLineSearch<GOS,TrlV,TstV>(go,u_)
, NewtonPrepareStep<GOS,TrlV,TstV>(go,u_)
{}
Newton(const GridOperator& go, Solver& solver_)
: NewtonBase<GOS,TrlV,TstV>(go)
, NewtonSolver<GOS,S,TrlV,TstV>(go,solver_)
, NewtonTerminate<GOS,TrlV,TstV>(go)
, NewtonLineSearch<GOS,TrlV,TstV>(go)
, NewtonPrepareStep<GOS,TrlV,TstV>(go)
{}
//! interpret a parameter tree as a set of options for the newton solver
/**
example configuration:
\code
[NewtonParameters]
ReassembleThreshold = 0.1
LineSearchMaxIterations = 10
MaxIterations = 7
AbsoluteLimit = 1e-6
Reduction = 1e-4
MinLinearReduction = 1e-3
LineSearchDamping = 0.9
\endcode
and invocation in the code:
\code
newton.setParameters(param.sub("NewtonParameters"));
\endcode
*/
void setParameters(const Dune::ParameterTree & param)
{
typedef typename TstV::field_type RFType;
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
if (param.hasKey("VerbosityLevel"))
this->setVerbosityLevel(
param.get<unsigned int>("VerbosityLevel"));
if (param.hasKey("Reduction"))
this->setReduction(
param.get<RFType>("Reduction"));
if (param.hasKey("MaxIterations"))
this->setMaxIterations(
param.get<unsigned int>("MaxIterations"));
if (param.hasKey("ForceIteration"))
this->setForceIteration(
param.get<bool>("ForceIteration"));
if (param.hasKey("AbsoluteLimit"))
this->setAbsoluteLimit(
param.get<RFType>("AbsoluteLimit"));
if (param.hasKey("MinLinearReduction"))
this->setMinLinearReduction(
param.get<RFType>("MinLinearReduction"));
if (param.hasKey("FixedLinearReduction"))
this->setFixedLinearReduction(
param.get<bool>("FixedLinearReduction"));
if (param.hasKey("ReassembleThreshold"))
this->setReassembleThreshold(
param.get<RFType>("ReassembleThreshold"));
if (param.hasKey("LineSearchStrategy"))
this->setLineSearchStrategy(
param.get<std::string>("LineSearchStrategy"));
if (param.hasKey("LineSearchMaxIterations"))
this->setLineSearchMaxIterations(
param.get<unsigned int>("LineSearchMaxIterations"));
if (param.hasKey("LineSearchDampingFactor"))
this->setLineSearchDampingFactor(
param.get<RFType>("LineSearchDampingFactor"));
if (param.hasKey("KeepMatrix"))
this->setKeepMatrix(
param.get<bool>("KeepMatrix"));
if (param.hasSub("Operator"))
this->setOperatorParams(param.sub("Operator"));