Newer
Older
// (c) bernhard schupp 1997 - 1998
// modifications for dune interface
#ifndef _GITTER_PLL_STI_CC_
#define _GITTER_PLL_STI_CC_
#include "gitter_pll_sti.h"
#include "walk.h"
int __STATIC_myrank = -1 ;
int __STATIC_turn = -1 ;
int __STATIC_phase = -1 ;
pair < IteratorSTI < GitterPll :: vertex_STI > *, IteratorSTI < GitterPll :: vertex_STI > *> GitterPll ::
iteratorTT (const GitterPll :: vertex_STI *, int l) {
vector < IteratorSTI < vertex_STI > * > _iterators_inner, _iterators_outer ;
_iterators_inner.push_back (new AccessIteratorTT < vertex_STI > :: InnerHandle (containerPll (), l)) ;
_iterators_outer.push_back (new AccessIteratorTT < vertex_STI > :: OuterHandle (containerPll (), l)) ;
{
AccessIteratorTT < hedge_STI > :: InnerHandle mie (containerPll (), l) ;
AccessIteratorTT < hedge_STI > :: OuterHandle moe (containerPll (), l) ;
Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > lie (mie) ;
Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > loe (moe) ;
_iterators_inner.push_back (new Wrapper < Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (lie)) ;
_iterators_outer.push_back (new Wrapper < Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (loe)) ;
}
{
AccessIteratorTT < hface_STI > :: InnerHandle mfi (containerPll (), l) ;
AccessIteratorTT < hface_STI > :: OuterHandle mfo (containerPll (), l) ;
{
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > > lfi (mfi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > > lfo (mfo) ;
_iterators_inner.push_back (new Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > >, InternalVertex > (lfi)) ;
_iterators_outer.push_back (new Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > >, InternalVertex > (lfo)) ;
}
{
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > lfi (mfi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > lfo (mfo) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > dlfi (lfi) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > dlfo (lfo) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > vdlfi (dlfi) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > vdlfo (dlfo) ;
_iterators_inner.push_back (new Wrapper < Insert < Wrapper <
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (vdlfi)) ;
_iterators_outer.push_back (new Wrapper <
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (vdlfo)) ;
}
}
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new VectorAlign < vertex_STI > (_iterators_inner), new VectorAlign < vertex_STI > (_iterators_outer)) ;
}
pair < IteratorSTI < GitterPll :: hedge_STI > *, IteratorSTI < GitterPll :: hedge_STI > * > GitterPll ::
iteratorTT (const GitterPll :: hedge_STI * fakep, int l)
{
// fakerule is only for type determination
is_leaf < hedge_STI > * rule = 0;
// see gitter_pll_sti.h
return createEdgeIteratorTT(rule,l);
}
pair < IteratorSTI < GitterPll :: hface_STI > *, IteratorSTI < GitterPll :: hface_STI > *>
GitterPll :: iteratorTT (const GitterPll :: hface_STI *, int l)
{
is_leaf< hface_STI > rule;
return this->createFaceIteratorTT(rule, l);
}
void GitterPll :: printSizeTT () {
cout << "\n GitterPll :: printSizeTT () \n\n" ;
mpAccess ().printLinkage (cout) ;
cout << endl ;
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < vertex_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " vertices: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < hedge_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " edges: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < hface_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " faces: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
return ;
}
void GitterPll :: printsize ()
{
const int me = mpAccess ().myrank (), np = mpAccess ().psize (), nl = mpAccess ().nlinks () ;
vector < int > n ;
{
int sum = 0 ;
for (int i = 0 ; i < nl ; ++i)
sum += LeafIteratorTT < vertex_STI > (*this, i).outer ().size () ;
n.push_back (LeafIterator < vertex_STI > (*this)->size() - sum) ;
}
{
int sum = 0 ;
for (int i = 0 ; i < nl ; ++i)
sum += LeafIteratorTT < hedge_STI > (*this, i).outer ().size () ;
n.push_back (LeafIterator < hedge_STI > (*this)->size() - sum) ;
}
int sumCutFaces = 0 ;
{
int sum = 0 ;
for (int i = 0 ; i < nl ; ++i) {
LeafIteratorTT < hface_STI > w (*this, i) ;
sum += w.outer ().size () ;
sumCutFaces += w.outer ().size () ;
sumCutFaces += w.inner ().size () ;
}
n.push_back (LeafIterator < hface_STI > (*this)->size() - sum) ;
}
n.push_back (LeafIterator < helement_STI > (*this)->size()) ;
n.push_back (LeafIterator < hbndseg_STI > (*this)->size() - sumCutFaces) ;
{
cout << "\nP[" << me << "] GitterPll :: printSize () : \n\n" ;
cout << " - Elements ......... " << n[3] << "\n" ;
cout << " - Boundaries ....... " << n[4] << "\n" ;
cout << " - Faces ............ " << n[2] << "\n" ;
cout << " - Edges ............ " << n[1] << "\n" ;
cout << " - Vertices ......... " << n[0] << "\n" ;
cout << endl ;
}
vector < vector < int > > in = mpAccess ().gcollect (n) ;
if (me == 0)
{
int nv = 0, nd = 0, nf = 0, ne = 0, nb = 0 ;
for (int i = 0 ; i < np ; ++i) {
nv += (in [i])[0] ;
nd += (in [i])[1] ;
nf += (in [i])[2] ;
ne += (in [i])[3] ;
nb += (in [i])[4] ;
}
cout << "\nSummary -- GitterPll :: printSize () : \n\n" ;
cout << " - Elements ......... " << ne << "\n" ;
cout << " - Boundaries ....... " << nb << "\n" ;
cout << " - Faces ............ " << nf << "\n" ;
cout << " - Edges ............ " << nd << "\n" ;
cout << " - Vertices ......... " << nv << "\n" ;
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
cout << endl ;
}
return ;
}
void GitterPll :: fullIntegrityCheck () {
int start = clock () ;
Gitter :: fullIntegrityCheck () ;
containerPll().fullIntegrityCheck (mpAccess ()) ;
if (debugOption (0)) {
cout << "**INFO GitterPll :: fullIntegrityCheck () used: " << (float)((float)(clock() - start)/(float)(CLOCKS_PER_SEC)) << " sec." << endl ;
}
return ;
}
void GitterPll :: backupCMode (const char * path, const char * file) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backupCMode (const char * = \""
<< (path ? path : "null") << ", const char * = \""
<< (file ? file : "null") << "\")" << endl, 1) : 1) ;
char * extendedName = new char [strlen (file) + 20] ;
sprintf (extendedName, "%s.%d", file, mpAccess ().myrank ()) ;
Gitter :: backupCMode (path, extendedName) ;
delete [] extendedName ;
return ;
}
void GitterPll :: backupCMode (ostream & out) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backupCMode (ostream &)" << endl, 1) : 1) ;
Gitter :: backupCMode (out) ;
return ;
}
void GitterPll :: backup (const char * path, const char * file) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backup (const char * = \""
<< (path ? path : "null") << ", const char * = \""
<< (file ? file : "null") << "\")" << endl, 1) : 1) ;
char * extendedName = new char [strlen (file) + 20] ;
sprintf (extendedName, "%s.%d", file, mpAccess ().myrank ()) ;
Gitter :: backup (path, extendedName) ;
delete [] extendedName ;
return ;
}
void GitterPll :: backup (ostream & out) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backup (ostream &)" << endl, 1) : 1) ;
Gitter :: backup (out) ;
return ;
}
void GitterPll :: backup (XDRstream_out & out) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: backup (ostream &)" << endl, 1) : 1) ;
Gitter :: backup (out) ;
return ;
}
void GitterPll :: restore (const char * path, const char * file) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: restore (const char * = \""
<< path << ", const char * = \""
<< file << "\")" << endl, 1) : 1) ;
char * extendedName = new char [strlen (file) + 20] ;
sprintf (extendedName, "%s.%d", file, mpAccess ().myrank ()) ;
Gitter :: restore (path, extendedName) ;
delete [] extendedName ;
return ;
}
void GitterPll :: restore (istream & in) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: restore (istream &)" << endl, 1) : 1) ;
Gitter :: restore (in) ;
return ;
}
void GitterPll :: restore (XDRstream_in & in) {
assert (debugOption (20) ? (cout << "**INFO GitterPll :: restore (istream &)" << endl, 1) : 1) ;
Gitter :: restore (in) ;
return ;
}
pair < IteratorSTI < Gitter :: vertex_STI > *, IteratorSTI < Gitter :: vertex_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const vertex_STI *, int i) {
assert (i < static_cast<int> (_vertexTT.size ()) ) ;
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new listSmartpointer__to__iteratorSTI < vertex_STI > (_vertexTT [i].first),
new listSmartpointer__to__iteratorSTI < vertex_STI > (_vertexTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: vertex_STI > *, IteratorSTI < Gitter :: vertex_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * > & p, int) {
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new listSmartpointer__to__iteratorSTI < vertex_STI > (*(const listSmartpointer__to__iteratorSTI < vertex_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < vertex_STI > (*(const listSmartpointer__to__iteratorSTI < vertex_STI > *)p.second)) ;
}
pair < IteratorSTI < Gitter :: hedge_STI > *, IteratorSTI < Gitter :: hedge_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const hedge_STI *, int i) {
return pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * >
(new listSmartpointer__to__iteratorSTI < hedge_STI > (_hedgeTT [i].first),
new listSmartpointer__to__iteratorSTI < hedge_STI > (_hedgeTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: hedge_STI > *, IteratorSTI < Gitter :: hedge_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * > & p, int) {
return pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * >
(new listSmartpointer__to__iteratorSTI < hedge_STI > (*(const listSmartpointer__to__iteratorSTI < hedge_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < hedge_STI > (*(const listSmartpointer__to__iteratorSTI < hedge_STI > *)p.second)) ;
}
pair < IteratorSTI < Gitter :: hface_STI > *, IteratorSTI < Gitter :: hface_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const hface_STI *, int i) {
return pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * >
(new listSmartpointer__to__iteratorSTI < hface_STI > (_hfaceTT [i].first),
new listSmartpointer__to__iteratorSTI < hface_STI > (_hfaceTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: hface_STI > *, IteratorSTI < Gitter :: hface_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * > & p, int) {
return pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * >
(new listSmartpointer__to__iteratorSTI < hface_STI > (*(const listSmartpointer__to__iteratorSTI < hface_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < hface_STI > (*(const listSmartpointer__to__iteratorSTI < hface_STI > *)p.second)) ;
}
bool GitterPll :: refine ()
{
assert (debugOption (5) ? (cout << "**INFO GitterPll :: refine () " << endl, 1) : 1) ;
bool state = false ;
vector < vector < hedge_STI * > > innerEdges (nl), outerEdges (nl) ;
vector < vector < hface_STI * > > innerFaces (nl), outerFaces (nl) ;
typedef vector < hedge_STI * > :: const_iterator hedge_iterator ;
typedef vector < hface_STI * > :: const_iterator hface_iterator ;
{
// Erst die Zeiger auf alle Fl"achen und Kanten mit paralleler
// Mehrdeutigkeit sichern, da die LeafIteratorTT < . > nach dem
// Verfeinern auf gitter nicht mehr stimmen werden. Die Technik
// ist zul"assig, da keine mehrfache Verfeinerung entstehen kann.
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
{
for (int l = 0 ; l < nl ; ++l)
{
//cout << "refinepll \n";
LeafIteratorTT < hface_STI > fw (*this,l) ;
LeafIteratorTT < hedge_STI > dw (*this,l) ;
// reserve memory first
outerFaces[l].reserve( fw.outer().size() );
innerFaces[l].reserve( fw.inner().size() );
for (fw.outer ().first () ; ! fw.outer().done () ; fw.outer ().next ())
outerFaces [l].push_back (& fw.outer ().item ()) ;
for (fw.inner ().first () ; ! fw.inner ().done () ; fw.inner ().next ())
innerFaces [l].push_back (& fw.inner ().item ()) ;
// reserve memory first
outerEdges[l].reserve( dw.outer().size() );
innerEdges[l].reserve( dw.inner().size() );
for (dw.outer ().first () ; ! dw.outer().done () ; dw.outer ().next ())
outerEdges [l].push_back (& dw.outer ().item ()) ;
for (dw.inner ().first () ; ! dw.inner ().done () ; dw.inner ().next ())
innerEdges [l].push_back (& dw.inner ().item ()) ;
}
}
// jetzt normal verfeinern und den Status der Verfeinerung
// [unvollst"andige / vollst"andige Verfeinerung] sichern.
__STATIC_phase = 1 ;
state = Gitter :: refine () ;
// Phase des Fl"achenausgleichs an den Schnittfl"achen des
// verteilten Gitters. Weil dort im sequentiellen Fall pseudorekursive
// Methodenaufrufe vorliegen k"onnen, muss solange iteriert werden,
// bis die Situation global station"ar ist.
__STATIC_phase = 2 ;
bool repeat (false) ;
_refineLoops = 0 ;
do {
repeat = false ;
{
vector < ObjectStream > osv (nl) ;
try {
for (int l = 0 ; l < nl ; ++l)
{
{
const hface_iterator iEnd = outerFaces[l].end () ;
//for (hface_iterator i = outerFaces [l].begin () ;
// i != iEnd; (*i ++)->accessPllX ().accessOuterPllX ().first->getRefinementRequest (osv [l])) ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i )
(*i)->accessOuterPllX ().first->getRefinementRequest (osv [l]) ;
}
{
const hface_iterator iEnd = innerFaces[l].end () ;
//for (hface_iterator i = innerFaces [l].begin () ;
// i != iEnd; (*i ++)->accessPllX ().accessOuterPllX ().first->getRefinementRequest (osv [l])) ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd ; ++i )
(*i)->accessOuterPllX ().first->getRefinementRequest (osv [l]) ;
}
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException in " << __FILE__ << " " << __LINE__ << endl ; abort () ;
}
// exchange data
osv = mpAccess ().exchange (osv) ;
try
{
for (int l = 0 ; l < nl ; ++l)
{
{
const hface_iterator iEnd = innerFaces[l].end () ;
//for (hface_iterator i = innerFaces [l].begin () ;
// i != iEnd; repeat |= (*i ++)->accessPllX ().accessOuterPllX ().first->setRefinementRequest (osv [l])) ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i )
repeat |= (*i)->accessOuterPllX ().first->setRefinementRequest (osv [l]) ;
}
{
const hface_iterator iEnd = outerFaces[l].end () ;
//for (hface_iterator i = outerFaces [l].begin () ;
// i != iEnd; repeat |= (*i ++)->accessPllX ().accessOuterPllX ().first->setRefinementRequest (osv [l])) ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i )
repeat |= (*i)->accessOuterPllX ().first->setRefinementRequest (osv [l]) ;
}
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException in " << __FILE__ << " " << __LINE__ << endl ; abort () ;
}
}
_refineLoops ++ ;
}
while (mpAccess ().gmax (repeat ? 1 : 0)) ;
// Jetzt noch die Kantensituation richtigstellen, es gen"ugt ein Durchlauf,
// weil die Verfeinerung einer Kante keine Fernwirkungen hat. Vorsicht: Die
// Kanten sind bez"uglich ihrer Identifikation sternf"ormig organisiert, d.h.
// es muss die Verfeinerungsinformation einmal am Eigent"umer gesammelt und
// dann wieder zur"ucktransportiert werden, eine einfache L"osung, wie bei
// den Fl"achen (1/1 Beziehung) scheidet aus.
__STATIC_phase = 3 ;
{
vector < ObjectStream > osv (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
const hedge_iterator iEnd = outerEdges[l].end () ;
//for (hedge_iterator i = outerEdges [l].begin () ;
// i != iEnd; (*i ++)->accessPllX ().getRefinementRequest (osv [l])) ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )
(*i)->getRefinementRequest (osv [l]) ;
}
// exchange data
osv = mpAccess ().exchange (osv) ;
{
for (int l = 0 ; l < nl ; ++l)
{
const hedge_iterator iEnd = innerEdges[l].end () ;
//for (hedge_iterator i = innerEdges [l].begin () ;
// i != iEnd; (*i ++)->accessPllX ().setRefinementRequest (osv [l])) ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i )
(*i)->setRefinementRequest (osv [l]) ;
}
} // ~vector < ObjectStream > ...
{
vector < ObjectStream > osv (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
const hedge_iterator iEnd = innerEdges[l].end () ;
//for (hedge_iterator i = innerEdges [l].begin () ;
// i != iEnd; (*i ++)->accessPllX ().getRefinementRequest (osv [l])) ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i )
(*i)->getRefinementRequest (osv [l]) ;
}
// exchange data
osv = mpAccess ().exchange (osv) ;
{
for (int l = 0 ; l < nl ; ++l)
{
const hedge_iterator iEnd = outerEdges [l].end () ;
//for (hedge_iterator i = outerEdges [l].begin () ;
// i != iEnd; (*i ++)->accessPllX ().setRefinementRequest (osv [l])) ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )
(*i)->setRefinementRequest (osv [l]) ;
}
}
} // ~vector < ObjectStream > ...
}
__STATIC_phase = -1 ;
return state ;
}
void GitterPll :: coarse ()
{
assert (debugOption (20) ? (cout << "**INFO GitterDunePll :: coarse () " << endl, 1) : 1) ;
const int nl = mpAccess ().nlinks () ;
typedef vector < hedge_STI * > :: iterator hedge_iterator ;
typedef vector < hface_STI * > :: iterator hface_iterator ;
{
vector < vector < hedge_STI * > > innerEdges (nl), outerEdges (nl) ;
vector < vector < hface_STI * > > innerFaces (nl), outerFaces (nl) ;
for (int l = 0 ; l < nl ; ++l)
{
// Zun"achst werden f"ur alle Links die Zeiger auf Gitterojekte mit
// Mehrdeutigkeit gesichert, die an der Wurzel einer potentiellen
// Vergr"oberungsoperation sitzen -> es sind die Knoten in der Hierarchie,
// deren Kinder alle Bl"atter sind. Genau diese Knoten sollen gegen"uber
// der Vergr"oberung blockiert werden und dann die Vergr"oberung falls
// sie zul"assig ist, sp"ater durchgef"uhrt werden (pending) ;
AccessIteratorTT < hface_STI > :: InnerHandle mfwi (containerPll (),l) ;
AccessIteratorTT < hface_STI > :: OuterHandle mfwo (containerPll (),l) ;
AccessIteratorTT < hedge_STI > :: InnerHandle mdwi (containerPll (),l) ;
AccessIteratorTT < hedge_STI > :: OuterHandle mdwo (containerPll (),l) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Fl"achen "uber den Grobgitterfl"achen. In den Elementen passiert erstmal
// nichts, solange nicht mit mehrfachen Grobgitterelementen gearbeitet wird.
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, childs_are_leafs < hface_STI > > > fwi (mfwi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, childs_are_leafs < hface_STI > > > fwo (mfwo) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Kanten "uber den Grobgitterkanten.
Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dwi (mdwi) ;
Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dwo (mdwo) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Kanten "uber den Grobgitterfl"achen. Diese Konstruktion wird beim Tetraeder-
// gitter notwendig, weil dort keine Aussage der Form:
//
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > efi (mfwi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > efo (mfwo) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > eifi (efi) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > eifo (efo) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dfi (eifi) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dfo (eifo) ;
// Die 'item ()' Resultatwerte (Zeiger) werden in Vektoren gesichert, weil die
// Kriterien die zur Erzeugung der Iteratoren angewendet wurden (Filter) nach
// einer teilweisen Vergr"oberung nicht mehr g"ultig sein werden, d.h. die
// Iterationsobjekte "andern w"ahrend der Vergr"oberung ihre Eigenschaften.
// Deshalb werden sie auch am Ende des Blocks aufgegeben. Der Vektor 'cache'
// ist zul"assig, weil kein Objekt auf das eine Referenz im 'cache' vorliegt
// beseitigt werden kann. Sie sind alle ein Niveau darunter.
// reserve memory first
innerFaces [l].reserve( fwi.size() );
outerFaces [l].reserve( fwo.size() );
for (fwi.first () ; ! fwi.done () ; fwi.next ()) innerFaces [l].push_back (& fwi.item ()) ;
for (fwo.first () ; ! fwo.done () ; fwo.next ()) outerFaces [l].push_back (& fwo.item ()) ;
// reserve memory first
innerEdges[l].reserve( dwi.size() + dfi.size() );
outerEdges[l].reserve( dwo.size() + dfo.size() );
for (dwo.first () ; ! dwo.done () ; dwo.next ()) outerEdges [l].push_back (& dwo.item ()) ;
for (dfo.first () ; ! dfo.done () ; dfo.next ()) outerEdges [l].push_back (& dfo.item ()) ;
for (dwi.first () ; ! dwi.done () ; dwi.next ()) innerEdges [l].push_back (& dwi.item ()) ;
for (dfi.first () ; ! dfi.done () ; dfi.next ()) innerEdges [l].push_back (& dfi.item ()) ;
}
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
try
{
// Erstmal alles was mehrdeutig ist, gegen die drohende Vergr"oberung sichern.
// Danach werden sukzessive die Fl"achenlocks aufgehoben, getestet und
// eventuell vergr"obert, dann das gleiche Spiel mit den Kanten.
for (int l = 0 ; l < nl ; ++l)
{
{
const hedge_iterator iEnd = outerEdges [l].end () ;
//for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; (*i ++)->lockAndTry ()) ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )
(*i)->lockAndTry () ;
}
{
const hedge_iterator iEnd = innerEdges [l].end () ;
//for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; (*i ++)->accessPllX ().lockAndTry ()) ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i )
(*i)->lockAndTry () ;
}
{
const hface_iterator iEnd = outerFaces [l].end () ;
//for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; (*i ++)->accessOuterPllX ().first->lockAndTry ()) ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i )
(*i)->accessOuterPllX ().first->lockAndTry () ;
}
{
const hface_iterator iEnd = innerFaces [l].end () ;
//for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; (*i ++)->accessOuterPllX ().first->lockAndTry ()) ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i )
(*i)->accessOuterPllX ().first->lockAndTry () ;
}
// Gitter :: coarse () ist elementorientiert, d.h. die Vergr"oberung auf Fl"achen und
// Kanten wird nur durch Vermittlung eines sich vergr"obernden Knotens in der Element-
// hierarchie angestossen. In allen gegen Vergr"oberung 'gelockten' Fl"achen und Kanten
// wird die angeforderte Operation zur"uckgewiesen, um erst sp"ater von aussen nochmals
// angestossen zu werden.
__STATIC_phase = 4 ;
// do real coarsening of elements
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Elementhierarchie oder\n" ;
cerr << " beim locken der Fl\"achen- bzw. Kantenb\"aume aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
// Phase des Fl"achenausgleichs des verteilten Vergr"oberungsalgorithmus
// alle Schnittfl"achenpaare werden daraufhin untersucht, ob eine
// Vergr"oberung in beiden Teilgittern durchgef"uhrt werden darf,
// wenn ja, wird in beiden Teilgittern vergr"obert und der Vollzug
// getestet.
__STATIC_phase = 5 ;
vector < vector < int > > clean (nl) ;
{
vector < vector < int > > inout (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
// reserve memory first
inout[l].reserve( outerFaces [l].size() );
// get end iterator
const hface_iterator iEnd = outerFaces [l].end () ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i)
{
inout [l].push_back ((*i)->accessOuterPllX ().first->lockAndTry ()) ;
}
}
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; ++l)
{
clean [l] = vector < int > (innerFaces [l].size (), long (true)) ;
vector < int > :: iterator j = clean [l].begin (), k = inout [l].begin () ;
const hface_iterator iEnd = innerFaces [l].end () ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i, ++j, ++k)
{
assert (j != clean [l].end ()) ; assert (k != inout [l].end ()) ;
(*j) &= (*k) && (*i)->accessOuterPllX ().first->lockAndTry () ;
}
}
}
{
vector < vector < int > > inout (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
// reserve memory first
inout[l].reserve( innerFaces [l].size() );
vector < int > :: iterator j = clean [l].begin () ;
const hface_iterator iEnd = innerFaces [l].end () ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i, ++j)
{
inout [l].push_back (*j) ;
(*i)->accessOuterPllX ().first->unlockAndResume (bool (*j)) ;
}
}
}
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; ++l)
{
vector < int > :: iterator j = inout [l].begin () ;
const hface_iterator iEnd = outerFaces [l].end () ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i, ++j)
{
assert (j != inout [l].end ()) ;
(*i)->accessOuterPllX ().first->unlockAndResume (bool (*j)) ;
}
}
}
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Fl\"achenb\"aume\n" ;
cerr << " aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
try
{
// Phase des Kantenausgleichs im parallelen Vergr"oberungsalgorithmus:
__STATIC_phase = 6 ;
// Weil hier jede Kante nur eindeutig auftreten darf, muss sie in einem
// map als Adresse hinterlegt werden, dann k"onnen die verschiedenen
// Refcounts aus den verschiedenen Links tats"achlich global miteinander
// abgemischt werden. Dazu werden zun"achst alle eigenen Kanten auf ihre
// Vergr"oberbarkeit hin untersucht und dieser Zustand (true = vergr"oberbar
// false = darf nicht vergr"obert werden) im map 'clean' hinterlegt. Dazu
// kommt noch ein zweiter 'bool' Wert, der anzeigt ob die Kante schon ab-
// schliessend vergr"obert wurde oder nicht.
map < hedge_STI *, pair < bool, bool >, less < hedge_STI * > > clean ;
{
for (int l = 0 ; l < nl ; l ++)
{
const hedge_iterator iEnd = innerEdges [l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i)
{
if (clean.find (*i) == clean.end ())
{
clean [*i] = pair < bool, bool > ((*i)->lockAndTry (), true) ;
}
}
}
{
vector < vector < int > > inout (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
// reserve memory first
inout[l].reserve( outerEdges [l].size() );
// get end iterator
const hedge_iterator iEnd = outerEdges [l].end () ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i)
{
inout [l].push_back ((*i)->lockAndTry ()) ;
}
}
}
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; ++l)
{
vector < int > :: const_iterator j = inout [l].begin () ;
// get end iterator
const hedge_iterator iEnd = innerEdges [l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i, ++j)
{
assert (j != inout [l].end ()) ;
assert (clean.find (*i) != clean.end ()) ;
if (*j == false) clean [*i] = pair < bool, bool > (false, clean[*i].second) ;
}
}
}
{
vector < vector < int > > inout (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
// reserve memory first
inout[l].reserve( innerEdges [l].size() );
// get end iterator
const hedge_iterator iEnd = innerEdges [l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i)
{
assert (clean.find (*i) != clean.end ()) ;
pair < bool, bool > & a = clean [*i] ;
inout [l].push_back (a.first) ;
if (a.second)
{
// Wenn wir hier sind, kann die Kante tats"achlich vergr"obert werden, genauer gesagt,
// sie wird es auch und der R"uckgabewert testet den Vollzug der Aktion. Weil aber nur
// einmal vergr"obert werden kann, und die Iteratoren 'innerEdges [l]' aber eventuell
// mehrfach "uber eine Kante hinweglaufen, muss diese Vergr"oberung im map 'clean'
// vermerkt werden. Dann wird kein zweiter Versuch unternommen.
a.second = false ;
(*i)->unlockAndResume (a.first) ;
assert (b == a.first) ;
}
}
}
}
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; l ++)
{
vector < int > :: iterator j = inout [l].begin () ;
// get end iterator
const hedge_iterator iEnd = outerEdges [l].end () ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i, ++j)
{
assert (j != inout [l].end ()) ;
// Selbe Situation wie oben, aber der Eigent"umer der Kante hat mitgeteilt, dass sie
// vergr"obert werden darf und auch wird auf allen Teilgebieten also auch hier. Der
// Vollzug der Vergr"oberung wird durch den R"uckgabewert getestet.
(*i)->unlockAndResume (bool (*j)) ;
assert (b == bool (*j)) ;
}
}
}
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Kantenb\"aume\n" ;
cerr << " aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
}
__STATIC_phase = -1 ;
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
}
bool GitterPll :: adapt () {
__STATIC_myrank = mpAccess ().myrank () ;
__STATIC_turn ++ ;
assert (debugOption (20) ? (cout << "**INFO GitterPll :: adapt ()" << endl, 1) : 1) ;
assert (! iterators_attached ()) ;
int start = clock () ;
bool refined = refine () ;
int lap = clock () ;
coarse () ;
int end = clock () ;
if (debugOption (1)) {
float u1 = (float)(lap - start)/(float)(CLOCKS_PER_SEC) ;
float u2 = (float)(end - lap)/(float)(CLOCKS_PER_SEC) ;
float u3 = (float)(end - start)/(float)(CLOCKS_PER_SEC) ;
cout << "**INFO GitterPll :: adapt () [ref (loops)|cse|all] " << u1 << " ("
<< _refineLoops << ") " << u2 << " " << u3 << endl ;
}
notifyGridChanges () ;
loadBalancerGridChangesNotify () ;
return refined;
}
void GitterPll :: MacroGitterPll :: fullIntegrityCheck (MpAccessLocal & mpa) {
const int nl = mpa.nlinks (), me = mpa.myrank () ;
try {
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
AccessIteratorTT < hface_STI > :: InnerHandle w (*this,l) ;
for ( w.first () ; ! w.done () ; w.next ()) {
vector < int > i = w.item ().checkParallelConnectivity () ;
copy (i.begin (), i.end (), back_inserter (inout [l])) ;
}
}}
inout = mpa.exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: const_iterator pos = inout [l].begin () ;
AccessIteratorTT < hface_STI > :: OuterHandle w (*this,l) ;
for (w.first () ; ! w.done () ; w.next ()) {
vector < int > t1 = w.item ().checkParallelConnectivity () ;
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
vector < int > t2 (t1.size (), 0) ;
copy (pos, pos + t1.size (), t2.begin ()) ;
pos += t1.size () ;
if (t1 != t2) {
cerr << "fehler an gebiet " << me << " : " ;
#ifdef IBM_XLC
copy (t1.begin (), t1.end (), ostream_iterator < int > (cerr, "-")) ;
#elif defined(_SGI)
copy (t1.begin (), t1.end (), ostream_iterator < int > (cerr, "-")) ;
#else
copy (t1.begin (), t1.end (), ostream_iterator < int , char > (cerr, "-")) ;
#endif
cerr << "\t" ;
#ifdef IBM_XLC
copy (t2.begin (), t2.end (), ostream_iterator < int > (cerr, "-")) ;
#elif defined(_SGI)
copy (t2.begin (), t2.end (), ostream_iterator < int > (cerr, "-")) ;
#else
copy (t2.begin (), t2.end (), ostream_iterator < int , char > (cerr, "-")) ;
#endif
cerr << endl ;
}
}
}}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) Parallel :: AccessPllException entstanden in: " << __FILE__ << " " << __LINE__ << endl ;
}
return ;
}
void GitterPll :: exchangeDynamicState () {
// Die Methode wird jedesmal aufgerufen, wenn sich der dynamische
// Zustand des Gitters ge"andert hat: Verfeinerung und alle Situationen
// die einer "Anderung des statischen Zustands entsprechen. Sie wird in
// diesem Fall NACH dem Update des statischen Zustands aufgerufen, und
// kann demnach von einem korrekten statischen Zustand ausgehen. F"ur
// Methoden die noch h"aufigere Updates erfordern m"ussen diese in der
// Regel hier eingeschleift werden.
{
//struct mallinfo minfo = mallinfo();
//cerr << "Anfang exchangeDynamicState(): Blocks allocated: " << (mallocedsize=(minfo.usmblks + minfo.uordblks)) << endl;
}
{
const int nl = mpAccess ().nlinks () ;
const int start = clock () ;
try {
vector < ObjectStream > osv (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
LeafIteratorTT < hface_STI > w (*this,l) ;
for (w.inner ().first () ; ! w.inner ().done () ; w.inner ().next ()) {
pair < ElementPllXIF_t *, int > p = w.inner ().item ().accessInnerPllX () ;
p.first->writeDynamicState (osv [l], p.second) ;
}
for (w.outer ().first () ; ! w.outer ().done () ; w.outer ().next ()) {
pair < ElementPllXIF_t *, int > p = w.outer ().item ().accessInnerPllX () ;
p.first->writeDynamicState (osv [l], p.second) ;
}
}}
osv = mpAccess ().exchange (osv) ;
{for (int l = 0 ; l < nl ; l ++ ) {
LeafIteratorTT < hface_STI > w (*this,l) ;
for (w.outer ().first () ; ! w.outer ().done () ; w.outer ().next ()) {
pair < ElementPllXIF_t *, int > p = w.outer ().item ().accessOuterPllX () ;
p.first->readDynamicState (osv [l], p.second) ;
}
for (w.inner ().first () ; ! w.inner ().done () ; w.inner ().next ()) {
pair < ElementPllXIF_t *, int > p = w.inner ().item ().accessOuterPllX () ;
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
p.first->readDynamicState (osv [l], p.second) ;
}
}}
} catch (Parallel :: AccessPllException) {
cerr << " FEHLER Parallel :: AccessPllException entstanden in: " << __FILE__ << " " << __LINE__ << endl ;
}
assert (debugOption (20) ? (cout << "**INFO GitterPll :: exchangeDynamicState () used "
<< (float)(clock () - start)/(float)(CLOCKS_PER_SEC) << " sec. " << endl, 1) : 1 ) ;
}
{
//struct mallinfo minfo = mallinfo();
//cerr << "Ende exchangeDynamicState(): Blocks allocated: " << minfo.usmblks + minfo.uordblks << " "
// << " Blocks used: " << minfo.usmblks + minfo.uordblks - mallocedsize << endl;
}
return ;
}
void GitterPll :: exchangeStaticState () {
// Die Methode wird jedesmal aufgerufen, wenn sich der statische
// Zustand (d.h. der Zustand, der mit dem Makrogitter verbunden ist)
// ge"andert hat: Makrogitteraufbau und Lastvertielung. Der statische
// Zustand darf durch Verfeinerung und h"ohere Methoden nicht beeinflusst
// sein.
const int start = clock () ;