Newer
Older
// (c) bernhard schupp 1997 - 1998
// modifications for dune interface
#ifndef _GITTER_PLL_STI_CC_
#define _GITTER_PLL_STI_CC_
#include "gitter_pll_sti.h"
#include "walk.h"
int __STATIC_myrank = -1 ;
int __STATIC_turn = -1 ;
int __STATIC_phase = -1 ;
pair < IteratorSTI < GitterPll :: vertex_STI > *, IteratorSTI < GitterPll :: vertex_STI > *> GitterPll ::
iteratorTT (const GitterPll :: vertex_STI *, int l) {
vector < IteratorSTI < vertex_STI > * > _iterators_inner, _iterators_outer ;
_iterators_inner.push_back (new AccessIteratorTT < vertex_STI > :: InnerHandle (containerPll (), l)) ;
_iterators_outer.push_back (new AccessIteratorTT < vertex_STI > :: OuterHandle (containerPll (), l)) ;
{
AccessIteratorTT < hedge_STI > :: InnerHandle mie (containerPll (), l) ;
AccessIteratorTT < hedge_STI > :: OuterHandle moe (containerPll (), l) ;
Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > lie (mie) ;
Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > loe (moe) ;
_iterators_inner.push_back (new Wrapper < Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (lie)) ;
_iterators_outer.push_back (new Wrapper < Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (loe)) ;
}
{
AccessIteratorTT < hface_STI > :: InnerHandle mfi (containerPll (), l) ;
AccessIteratorTT < hface_STI > :: OuterHandle mfo (containerPll (), l) ;
{
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > > lfi (mfi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > > lfo (mfo) ;
_iterators_inner.push_back (new Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > >, InternalVertex > (lfi)) ;
_iterators_outer.push_back (new Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_vertex < hface_STI > > >, InternalVertex > (lfo)) ;
}
{
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > lfi (mfi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > lfo (mfo) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > dlfi (lfi) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > dlfo (lfo) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > vdlfi (dlfi) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > > vdlfo (dlfo) ;
_iterators_inner.push_back (new Wrapper < Insert < Wrapper <
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (vdlfi)) ;
_iterators_outer.push_back (new Wrapper <
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, has_int_vertex < hedge_STI > > >, InternalVertex > (vdlfo)) ;
}
}
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new VectorAlign < vertex_STI > (_iterators_inner), new VectorAlign < vertex_STI > (_iterators_outer)) ;
}
pair < IteratorSTI < GitterPll :: hedge_STI > *, IteratorSTI < GitterPll :: hedge_STI > * > GitterPll ::
iteratorTT (const GitterPll :: hedge_STI * fakep, int l)
{
// fakerule is only for type determination
is_leaf < hedge_STI > * rule = 0;
// see gitter_pll_sti.h
return createEdgeIteratorTT(rule,l);
}
pair < IteratorSTI < GitterPll :: hface_STI > *, IteratorSTI < GitterPll :: hface_STI > *>
GitterPll :: iteratorTT (const GitterPll :: hface_STI *, int l)
{
is_leaf< hface_STI > rule;
return this->createFaceIteratorTT(rule, l);
}
void GitterPll :: printSizeTT () {
cout << "\n GitterPll :: printSizeTT () \n\n" ;
mpAccess ().printLinkage (cout) ;
cout << endl ;
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < vertex_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " vertices: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < hedge_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " edges: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
{ for (int l = 0 ; l < mpAccess ().nlinks () ; l ++ ) {
LeafIteratorTT < hface_STI > w (*this, l) ;
cout << "me: " << mpAccess ().myrank () << " link: " << l << " faces: [inner|outer] " << w.inner ().size () << " " << w.outer ().size () << endl ;
}}
return ;
}
void GitterPll :: printsize ()
{
const int me = mpAccess ().myrank (), np = mpAccess ().psize (), nl = mpAccess ().nlinks () ;
vector < int > n ;
{
int sum = 0 ;
for (int i = 0 ; i < nl ; ++i)
sum += LeafIteratorTT < vertex_STI > (*this, i).outer ().size () ;
n.push_back (LeafIterator < vertex_STI > (*this)->size() - sum) ;
}
{
int sum = 0 ;
for (int i = 0 ; i < nl ; ++i)
sum += LeafIteratorTT < hedge_STI > (*this, i).outer ().size () ;
n.push_back (LeafIterator < hedge_STI > (*this)->size() - sum) ;
}
int sumCutFaces = 0 ;
{
int sum = 0 ;
for (int i = 0 ; i < nl ; ++i) {
LeafIteratorTT < hface_STI > w (*this, i) ;
sum += w.outer ().size () ;
sumCutFaces += w.outer ().size () ;
sumCutFaces += w.inner ().size () ;
}
n.push_back (LeafIterator < hface_STI > (*this)->size() - sum) ;
}
n.push_back (LeafIterator < helement_STI > (*this)->size()) ;
n.push_back (LeafIterator < hbndseg_STI > (*this)->size() - sumCutFaces) ;
{
cout << "\nP[" << me << "] GitterPll :: printSize () : \n\n" ;
cout << " - Elements ......... " << n[3] << "\n" ;
cout << " - Boundaries ....... " << n[4] << "\n" ;
cout << " - Faces ............ " << n[2] << "\n" ;
cout << " - Edges ............ " << n[1] << "\n" ;
cout << " - Vertices ......... " << n[0] << "\n" ;
cout << endl ;
}
vector < vector < int > > in = mpAccess ().gcollect (n) ;
if (me == 0)
{
int nv = 0, nd = 0, nf = 0, ne = 0, nb = 0 ;
for (int i = 0 ; i < np ; ++i) {
nv += (in [i])[0] ;
nd += (in [i])[1] ;
nf += (in [i])[2] ;
ne += (in [i])[3] ;
nb += (in [i])[4] ;
}
cout << "\nSummary -- GitterPll :: printSize () : \n\n" ;
cout << " - Elements ......... " << ne << "\n" ;
cout << " - Boundaries ....... " << nb << "\n" ;
cout << " - Faces ............ " << nf << "\n" ;
cout << " - Edges ............ " << nd << "\n" ;
cout << " - Vertices ......... " << nv << "\n" ;
cout << endl ;
}
return ;
}
void GitterPll :: fullIntegrityCheck () {
int start = clock () ;
Gitter :: fullIntegrityCheck () ;
containerPll().fullIntegrityCheck (mpAccess ()) ;
if (debugOption (0)) {
cout << "**INFO GitterPll :: fullIntegrityCheck () used: " << (float)((float)(clock() - start)/(float)(CLOCKS_PER_SEC)) << " sec." << endl ;
}
return ;
}
pair < IteratorSTI < Gitter :: vertex_STI > *, IteratorSTI < Gitter :: vertex_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const vertex_STI *, int i) {
assert (i < static_cast<int> (_vertexTT.size ()) ) ;
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new listSmartpointer__to__iteratorSTI < vertex_STI > (_vertexTT [i].first),
new listSmartpointer__to__iteratorSTI < vertex_STI > (_vertexTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: vertex_STI > *, IteratorSTI < Gitter :: vertex_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * > & p, int) {
return pair < IteratorSTI < vertex_STI > *, IteratorSTI < vertex_STI > * >
(new listSmartpointer__to__iteratorSTI < vertex_STI > (*(const listSmartpointer__to__iteratorSTI < vertex_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < vertex_STI > (*(const listSmartpointer__to__iteratorSTI < vertex_STI > *)p.second)) ;
}
pair < IteratorSTI < Gitter :: hedge_STI > *, IteratorSTI < Gitter :: hedge_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const hedge_STI *, int i) {
return pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * >
(new listSmartpointer__to__iteratorSTI < hedge_STI > (_hedgeTT [i].first),
new listSmartpointer__to__iteratorSTI < hedge_STI > (_hedgeTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: hedge_STI > *, IteratorSTI < Gitter :: hedge_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * > & p, int) {
return pair < IteratorSTI < hedge_STI > *, IteratorSTI < hedge_STI > * >
(new listSmartpointer__to__iteratorSTI < hedge_STI > (*(const listSmartpointer__to__iteratorSTI < hedge_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < hedge_STI > (*(const listSmartpointer__to__iteratorSTI < hedge_STI > *)p.second)) ;
}
pair < IteratorSTI < Gitter :: hface_STI > *, IteratorSTI < Gitter :: hface_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const hface_STI *, int i) {
return pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * >
(new listSmartpointer__to__iteratorSTI < hface_STI > (_hfaceTT [i].first),
new listSmartpointer__to__iteratorSTI < hface_STI > (_hfaceTT [i].second)) ;
}
pair < IteratorSTI < Gitter :: hface_STI > *, IteratorSTI < Gitter :: hface_STI > * >
GitterPll :: MacroGitterPll :: iteratorTT (const pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * > & p, int) {
return pair < IteratorSTI < hface_STI > *, IteratorSTI < hface_STI > * >
(new listSmartpointer__to__iteratorSTI < hface_STI > (*(const listSmartpointer__to__iteratorSTI < hface_STI > *)p.first),
new listSmartpointer__to__iteratorSTI < hface_STI > (*(const listSmartpointer__to__iteratorSTI < hface_STI > *)p.second)) ;
}
bool GitterPll :: refine ()
{
assert (debugOption (5) ? (cout << "**INFO GitterPll :: refine () " << endl, 1) : 1) ;
bool state = false ;
vector < vector < hedge_STI * > > innerEdges (nl), outerEdges (nl) ;
vector < vector < hface_STI * > > innerFaces (nl), outerFaces (nl) ;
typedef vector < hedge_STI * > :: const_iterator hedge_iterator ;
typedef vector < hface_STI * > :: const_iterator hface_iterator ;
{
// Erst die Zeiger auf alle Fl"achen und Kanten mit paralleler
// Mehrdeutigkeit sichern, da die LeafIteratorTT < . > nach dem
// Verfeinern auf gitter nicht mehr stimmen werden. Die Technik
// ist zul"assig, da keine mehrfache Verfeinerung entstehen kann.
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
{
for (int l = 0 ; l < nl ; ++l)
{
//cout << "refinepll \n";
LeafIteratorTT < hface_STI > fw (*this,l) ;
LeafIteratorTT < hedge_STI > dw (*this,l) ;
// reserve memory first
outerFaces[l].reserve( fw.outer().size() );
innerFaces[l].reserve( fw.inner().size() );
for (fw.outer ().first () ; ! fw.outer().done () ; fw.outer ().next ())
outerFaces [l].push_back (& fw.outer ().item ()) ;
for (fw.inner ().first () ; ! fw.inner ().done () ; fw.inner ().next ())
innerFaces [l].push_back (& fw.inner ().item ()) ;
// reserve memory first
outerEdges[l].reserve( dw.outer().size() );
innerEdges[l].reserve( dw.inner().size() );
for (dw.outer ().first () ; ! dw.outer().done () ; dw.outer ().next ())
outerEdges [l].push_back (& dw.outer ().item ()) ;
for (dw.inner ().first () ; ! dw.inner ().done () ; dw.inner ().next ())
innerEdges [l].push_back (& dw.inner ().item ()) ;
}
}
// jetzt normal verfeinern und den Status der Verfeinerung
// [unvollst"andige / vollst"andige Verfeinerung] sichern.
__STATIC_phase = 1 ;
state = Gitter :: refine () ;
// Phase des Fl"achenausgleichs an den Schnittfl"achen des
// verteilten Gitters. Weil dort im sequentiellen Fall pseudorekursive
// Methodenaufrufe vorliegen k"onnen, muss solange iteriert werden,
// bis die Situation global station"ar ist.
__STATIC_phase = 2 ;
bool repeat (false) ;
_refineLoops = 0 ;
do {
repeat = false ;
{
vector < ObjectStream > osv (nl) ;
try {
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = osv[ l ];
// reserve memory for object stream
os.reserve( (outerFaces[l].size() + innerFaces[l].size() ) * sizeof(char) );
{
const hface_iterator iEnd = outerFaces[l].end () ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i )

Robert Klöfkorn
committed
(*i)->accessOuterPllX ().first->getRefinementRequest ( os ) ;
}
{
const hface_iterator iEnd = innerFaces[l].end () ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd ; ++i )

Robert Klöfkorn
committed
(*i)->accessOuterPllX ().first->getRefinementRequest ( os ) ;
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException in " << __FILE__ << " " << __LINE__ << endl ; abort () ;
}
// exchange data
osv = mpAccess ().exchange (osv) ;
try
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = osv [l];
{
const hface_iterator iEnd = innerFaces[l].end () ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i )

Robert Klöfkorn
committed
repeat |= (*i)->accessOuterPllX ().first->setRefinementRequest ( os ) ;
}
{
const hface_iterator iEnd = outerFaces[l].end () ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i )

Robert Klöfkorn
committed
repeat |= (*i)->accessOuterPllX ().first->setRefinementRequest ( os ) ;
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException in " << __FILE__ << " " << __LINE__ << endl ; abort () ;
}
}
_refineLoops ++ ;
// Jetzt noch die Kantensituation richtigstellen, es gen"ugt ein Durchlauf,
// weil die Verfeinerung einer Kante keine Fernwirkungen hat. Vorsicht: Die
// Kanten sind bez"uglich ihrer Identifikation sternf"ormig organisiert, d.h.
// es muss die Verfeinerungsinformation einmal am Eigent"umer gesammelt und
// dann wieder zur"ucktransportiert werden, eine einfache L"osung, wie bei
// den Fl"achen (1/1 Beziehung) scheidet aus.
__STATIC_phase = 3 ;
{
vector < ObjectStream > osv (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = osv[ l ];
const hedge_iterator iEnd = outerEdges[l].end () ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )

Robert Klöfkorn
committed
(*i)->getRefinementRequest ( os ) ;
// exchange data
osv = mpAccess ().exchange (osv) ;
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = osv[ l ];
const hedge_iterator iEnd = innerEdges[l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i )

Robert Klöfkorn
committed
(*i)->setRefinementRequest ( os ) ;
} // ~vector < ObjectStream > ...
{
vector < ObjectStream > osv (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{
ObjectStream& os = osv[ l ];
// reserve memory
os.reserve( innerEdges[l].size() * sizeof(char) );
const hedge_iterator iEnd = innerEdges[l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i )
(*i)->getRefinementRequest ( os ) ;
// exchange data
osv = mpAccess ().exchange (osv) ;
{
for (int l = 0 ; l < nl ; ++l)
{
ObjectStream& os = osv[ l ];
const hedge_iterator iEnd = outerEdges [l].end () ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )
(*i)->setRefinementRequest ( os ) ;
}
} // ~vector < ObjectStream > ...
}
__STATIC_phase = -1 ;
return state ;
}
void GitterPll :: coarse ()
{
assert (debugOption (20) ? (cout << "**INFO GitterDunePll :: coarse () " << endl, 1) : 1) ;
const int nl = mpAccess ().nlinks () ;
typedef vector < hedge_STI * > :: iterator hedge_iterator ;
typedef vector < hface_STI * > :: iterator hface_iterator ;
{
vector < vector < hedge_STI * > > innerEdges (nl), outerEdges (nl) ;
vector < vector < hface_STI * > > innerFaces (nl), outerFaces (nl) ;
for (int l = 0 ; l < nl ; ++l)
{
// Zun"achst werden f"ur alle Links die Zeiger auf Gitterojekte mit
// Mehrdeutigkeit gesichert, die an der Wurzel einer potentiellen
// Vergr"oberungsoperation sitzen -> es sind die Knoten in der Hierarchie,
// deren Kinder alle Bl"atter sind. Genau diese Knoten sollen gegen"uber
// der Vergr"oberung blockiert werden und dann die Vergr"oberung falls
// sie zul"assig ist, sp"ater durchgef"uhrt werden (pending) ;
AccessIteratorTT < hface_STI > :: InnerHandle mfwi (containerPll (),l) ;
AccessIteratorTT < hface_STI > :: OuterHandle mfwo (containerPll (),l) ;
AccessIteratorTT < hedge_STI > :: InnerHandle mdwi (containerPll (),l) ;
AccessIteratorTT < hedge_STI > :: OuterHandle mdwo (containerPll (),l) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Fl"achen "uber den Grobgitterfl"achen. In den Elementen passiert erstmal
// nichts, solange nicht mit mehrfachen Grobgitterelementen gearbeitet wird.
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, childs_are_leafs < hface_STI > > > fwi (mfwi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, childs_are_leafs < hface_STI > > > fwo (mfwo) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Kanten "uber den Grobgitterkanten.
Insert < AccessIteratorTT < hedge_STI > :: InnerHandle,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dwi (mdwi) ;
Insert < AccessIteratorTT < hedge_STI > :: OuterHandle,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dwo (mdwo) ;
// Die inneren und a"usseren Iteratoren der potentiell vergr"oberungsf"ahigen
// Kanten "uber den Grobgitterfl"achen. Diese Konstruktion wird beim Tetraeder-
// gitter notwendig, weil dort keine Aussage der Form:
//
Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > efi (mfwi) ;
Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > > efo (mfwo) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > eifi (efi) ;
Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge > eifo (efo) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: InnerHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dfi (eifi) ;
Insert < Wrapper < Insert < AccessIteratorTT < hface_STI > :: OuterHandle,
TreeIterator < hface_STI, has_int_edge < hface_STI > > >, InternalEdge >,
TreeIterator < hedge_STI, childs_are_leafs < hedge_STI > > > dfo (eifo) ;
// Die 'item ()' Resultatwerte (Zeiger) werden in Vektoren gesichert, weil die
// Kriterien die zur Erzeugung der Iteratoren angewendet wurden (Filter) nach
// einer teilweisen Vergr"oberung nicht mehr g"ultig sein werden, d.h. die
// Iterationsobjekte "andern w"ahrend der Vergr"oberung ihre Eigenschaften.
// Deshalb werden sie auch am Ende des Blocks aufgegeben. Der Vektor 'cache'
// ist zul"assig, weil kein Objekt auf das eine Referenz im 'cache' vorliegt
// beseitigt werden kann. Sie sind alle ein Niveau darunter.
// reserve memory first
innerFaces [l].reserve( fwi.size() );
outerFaces [l].reserve( fwo.size() );
for (fwi.first () ; ! fwi.done () ; fwi.next ()) innerFaces [l].push_back (& fwi.item ()) ;
for (fwo.first () ; ! fwo.done () ; fwo.next ()) outerFaces [l].push_back (& fwo.item ()) ;
// reserve memory first
innerEdges[l].reserve( dwi.size() + dfi.size() );
outerEdges[l].reserve( dwo.size() + dfo.size() );
for (dwo.first () ; ! dwo.done () ; dwo.next ()) outerEdges [l].push_back (& dwo.item ()) ;
for (dfo.first () ; ! dfo.done () ; dfo.next ()) outerEdges [l].push_back (& dfo.item ()) ;
for (dwi.first () ; ! dwi.done () ; dwi.next ()) innerEdges [l].push_back (& dwi.item ()) ;
for (dfi.first () ; ! dfi.done () ; dfi.next ()) innerEdges [l].push_back (& dfi.item ()) ;
}
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
try
{
// Erstmal alles was mehrdeutig ist, gegen die drohende Vergr"oberung sichern.
// Danach werden sukzessive die Fl"achenlocks aufgehoben, getestet und
// eventuell vergr"obert, dann das gleiche Spiel mit den Kanten.
for (int l = 0 ; l < nl ; ++l)
{
{
const hedge_iterator iEnd = outerEdges [l].end () ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )
(*i)->lockAndTry () ;
}
{
const hedge_iterator iEnd = innerEdges [l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i )
(*i)->lockAndTry () ;
}
{
const hface_iterator iEnd = outerFaces [l].end () ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i )
(*i)->accessOuterPllX ().first->lockAndTry () ;
}
{
const hface_iterator iEnd = innerFaces [l].end () ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i )
(*i)->accessOuterPllX ().first->lockAndTry () ;
}
// Gitter :: coarse () ist elementorientiert, d.h. die Vergr"oberung auf Fl"achen und
// Kanten wird nur durch Vermittlung eines sich vergr"obernden Knotens in der Element-
// hierarchie angestossen. In allen gegen Vergr"oberung 'gelockten' Fl"achen und Kanten
// wird die angeforderte Operation zur"uckgewiesen, um erst sp"ater von aussen nochmals
// angestossen zu werden.
__STATIC_phase = 4 ;
// do real coarsening of elements
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Elementhierarchie oder\n" ;
cerr << " beim locken der Fl\"achen- bzw. Kantenb\"aume aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
// Phase des Fl"achenausgleichs des verteilten Vergr"oberungsalgorithmus
// alle Schnittfl"achenpaare werden daraufhin untersucht, ob eine
// Vergr"oberung in beiden Teilgittern durchgef"uhrt werden darf,
// wenn ja, wird in beiden Teilgittern vergr"obert und der Vollzug
// getestet.
__STATIC_phase = 5 ;

Robert Klöfkorn
committed
typedef vector< int > cleanvector_t ;
vector < cleanvector_t > clean (nl) ;

Robert Klöfkorn
committed
//vector < vector < int > > inout (nl) ;
vector < ObjectStream > inout( nl );
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
// reserve memory
os.reserve( outerFaces [l].size() * sizeof(char) );
// reserve memory first

Robert Klöfkorn
committed
//inout[l].reserve( outerFaces [l].size() );
// get end iterator
const hface_iterator iEnd = outerFaces [l].end () ;
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i)
{

Robert Klöfkorn
committed
char lockAndTry = (*i)->accessOuterPllX ().first->lockAndTry ();
os.putNoChk( lockAndTry );
//inout [l].push_back ((*i)->accessOuterPllX ().first->lockAndTry ()) ;
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
cleanvector_t& cl = clean[ l ];
// reset clean vector
cl = cleanvector_t( innerFaces [l].size (), int(true) ) ;
cleanvector_t :: iterator j = cl.begin ();//, k = inout [l].begin () ;
const hface_iterator iEnd = innerFaces [l].end () ;

Robert Klöfkorn
committed
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i, ++j )//, ++k)

Robert Klöfkorn
committed
// get lockAndTry info
const bool locked = bool( os.get() );
assert (j != cl.end ()) ;
//assert (k != inout [l].end ()) ;
//(*j) &= (*k) && (*i)->accessOuterPllX ().first->lockAndTry () ;
(*j) &= locked && (*i)->accessOuterPllX ().first->lockAndTry () ;

Robert Klöfkorn
committed
//vector < vector < int > > inout (nl) ;
vector < ObjectStream > inout (nl) ;
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
// reserve memory
os.reserve( innerFaces [l].size() * sizeof(char) );
//inout[l].reserve( innerFaces [l].size() );

Robert Klöfkorn
committed
cleanvector_t :: iterator j = clean [l].begin () ;
const hface_iterator iEnd = innerFaces [l].end () ;
for (hface_iterator i = innerFaces [l].begin () ; i != iEnd; ++i, ++j)
{

Robert Klöfkorn
committed
const bool unlock = *j;
os.putNoChk( char(unlock) );
//inout [l].push_back (*j) ;
(*i)->accessOuterPllX ().first->unlockAndResume ( unlock );
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
//vector < int > :: iterator j = inout [l].begin () ;
const hface_iterator iEnd = outerFaces [l].end () ;

Robert Klöfkorn
committed
for (hface_iterator i = outerFaces [l].begin () ; i != iEnd; ++i ) //, ++j)

Robert Klöfkorn
committed
const bool unlock = bool( os.get() );
//assert (j != inout [l].end ()) ;
(*i)->accessOuterPllX ().first->unlockAndResume ( unlock ) ;
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Fl\"achenb\"aume\n" ;
cerr << " aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
try
{
// Phase des Kantenausgleichs im parallelen Vergr"oberungsalgorithmus:
__STATIC_phase = 6 ;
// Weil hier jede Kante nur eindeutig auftreten darf, muss sie in einem
// map als Adresse hinterlegt werden, dann k"onnen die verschiedenen
// Refcounts aus den verschiedenen Links tats"achlich global miteinander
// abgemischt werden. Dazu werden zun"achst alle eigenen Kanten auf ihre
// Vergr"oberbarkeit hin untersucht und dieser Zustand (true = vergr"oberbar
// false = darf nicht vergr"obert werden) im map 'clean' hinterlegt. Dazu
// kommt noch ein zweiter 'bool' Wert, der anzeigt ob die Kante schon ab-
// schliessend vergr"obert wurde oder nicht.

Robert Klöfkorn
committed
typedef pair < bool, bool > clean_t ;
typedef map < hedge_STI *, clean_t, less < hedge_STI * > > cleanmap_t ;
typedef cleanmap_t :: iterator cleanmapiterator_t ;
cleanmap_t clean ;

Robert Klöfkorn
committed
const cleanmapiterator_t cleanEnd = clean.end();
{
for (int l = 0 ; l < nl ; l ++)
{
const hedge_iterator iEnd = innerEdges [l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i)
{

Robert Klöfkorn
committed
hedge_STI* edge = (*i);
cleanmapiterator_t cit = clean.find ( edge );
if (cit == cleanEnd )

Robert Klöfkorn
committed
clean_t& cp = clean[ edge ];
cp.first = edge->lockAndTry () ;
cp.second = true ;

Robert Klöfkorn
committed
//vector < vector < int > > inout (nl) ;
vector < ObjectStream > inout( nl );
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
// reserve memory first

Robert Klöfkorn
committed
os.reserve( outerEdges [l].size() * sizeof(char) );
//inout[l].reserve( outerEdges [l].size() );
// get end iterator
const hedge_iterator iEnd = outerEdges [l].end () ;
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i)
{

Robert Klöfkorn
committed
char lockAndTry = (*i)->lockAndTry ();
os.putNoChk( lockAndTry );
// inout [l].push_back ((*i)->lockAndTry ()) ;
}
}
}
// exchange data
inout = mpAccess ().exchange (inout) ;
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
//vector < int > :: const_iterator j = inout [l].begin () ;
// get end iterator
const hedge_iterator iEnd = innerEdges [l].end () ;

Robert Klöfkorn
committed
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i) //, ++j)

Robert Klöfkorn
committed
//assert (j != inout [l].end ()) ;
const bool locked = bool( os.get() );
if( locked == false )
{
assert (clean.find (*i) != cleanEnd ) ;
clean[ *i ].first = false ;
}

Robert Klöfkorn
committed
//vector < vector < int > > inout (nl) ;
vector < ObjectStream > inout( nl );
{
for (int l = 0 ; l < nl ; ++l)
{

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ];
// reserve memory first

Robert Klöfkorn
committed
os.reserve( innerEdges [l].size() * sizeof(char) );
//inout[l].reserve( innerEdges [l].size() );
// get end iterator
const hedge_iterator iEnd = innerEdges [l].end () ;
for (hedge_iterator i = innerEdges [l].begin () ; i != iEnd; ++i)
{

Robert Klöfkorn
committed
hedge_STI* edge = (*i);
assert (clean.find ( edge ) != clean.end ()) ;
clean_t& a = clean [ edge ] ;
os.putNoChk( char( a.first) );
//inout [l].push_back (a.first) ;
if (a.second)
{
// Wenn wir hier sind, kann die Kante tats"achlich vergr"obert werden, genauer gesagt,
// sie wird es auch und der R"uckgabewert testet den Vollzug der Aktion. Weil aber nur
// einmal vergr"obert werden kann, und die Iteratoren 'innerEdges [l]' aber eventuell
// mehrfach "uber eine Kante hinweglaufen, muss diese Vergr"oberung im map 'clean'
// vermerkt werden. Dann wird kein zweiter Versuch unternommen.
a.second = false ;

Robert Klöfkorn
committed
edge->unlockAndResume (a.first) ;
assert (b == a.first) ;
}
}
}
}
// exchange data
inout = mpAccess ().exchange (inout) ;

Robert Klöfkorn
committed
for (int l = 0 ; l < nl ; ++l )

Robert Klöfkorn
committed
ObjectStream& os = inout[ l ] ;
//vector < int > :: iterator j = inout [l].begin () ;
// get end iterator
const hedge_iterator iEnd = outerEdges [l].end () ;

Robert Klöfkorn
committed
for (hedge_iterator i = outerEdges [l].begin () ; i != iEnd; ++i )//, ++j)

Robert Klöfkorn
committed
//assert (j != inout [l].end ()) ;
// Selbe Situation wie oben, aber der Eigent"umer der Kante hat mitgeteilt, dass sie
// vergr"obert werden darf und auch wird auf allen Teilgebieten also auch hier. Der
// Vollzug der Vergr"oberung wird durch den R"uckgabewert getestet.

Robert Klöfkorn
committed
const bool unlock = bool( os.get() );

Robert Klöfkorn
committed
(*i)->unlockAndResume ( unlock ) ;
assert (b == unlock) ;
}
catch (Parallel :: AccessPllException)
{
cerr << "**FEHLER (FATAL) AccessPllException beim Vergr\"obern der Kantenb\"aume\n" ;
cerr << " aufgetreten. In " << __FILE__ << " " << __LINE__ << endl ;
abort () ;
}
}
__STATIC_phase = -1 ;
extern int adaptstep;
extern int stepnumber;
#endif
bool GitterPll :: adapt ()
{
#ifdef ENABLE_ALUGRID_VTK_OUTPUT
stepnumber = 0;
#endif
bool refined = false;
bool conformClosure = false ;
const bool needConformingClosure = conformingClosureNeeded();
assert( needConformingClosure == mpAccess().gmax( needConformingClosure ) );
__STATIC_myrank = mpAccess ().myrank () ;
__STATIC_turn ++ ;
assert (debugOption (20) ? (cout << "**INFO GitterPll :: adapt ()" << endl, 1) : 1) ;
assert (! iterators_attached ()) ;
int start = clock () ;
refined |= refine () ;
int lap = clock () ;
coarse () ;
int end = clock () ;
if (debugOption (1)) {
float u1 = (float)(lap - start)/(float)(CLOCKS_PER_SEC) ;
float u2 = (float)(end - lap)/(float)(CLOCKS_PER_SEC) ;
float u3 = (float)(end - start)/(float)(CLOCKS_PER_SEC) ;
cout << "**INFO GitterPll :: adapt () [ref (loops)|cse|all] " << u1 << " ("
<< _refineLoops << ") " << u2 << " " << u3 << endl ;
}
notifyGridChanges () ;
loadBalancerGridChangesNotify () ;
// for bisection refinement repeat loop if non-confoming edges are still present
conformClosure =
needConformingClosure ? mpAccess().gmax( ! markForConformingClosure() ) : false ;
++adaptstep;
return refined;
}
void GitterPll :: MacroGitterPll :: fullIntegrityCheck (MpAccessLocal & mpa) {
const int nl = mpa.nlinks (), me = mpa.myrank () ;
try {
vector < vector < int > > inout (nl) ;
{for (int l = 0 ; l < nl ; l ++) {
AccessIteratorTT < hface_STI > :: InnerHandle w (*this,l) ;
for ( w.first () ; ! w.done () ; w.next ()) {
vector < int > i = w.item ().checkParallelConnectivity () ;
copy (i.begin (), i.end (), back_inserter (inout [l])) ;
}
}}
inout = mpa.exchange (inout) ;
{for (int l = 0 ; l < nl ; l ++) {
vector < int > :: const_iterator pos = inout [l].begin () ;
AccessIteratorTT < hface_STI > :: OuterHandle w (*this,l) ;
for (w.first () ; ! w.done () ; w.next ()) {
vector < int > t1 = w.item ().checkParallelConnectivity () ;
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
vector < int > t2 (t1.size (), 0) ;
copy (pos, pos + t1.size (), t2.begin ()) ;
pos += t1.size () ;
if (t1 != t2) {
cerr << "fehler an gebiet " << me << " : " ;
#ifdef IBM_XLC
copy (t1.begin (), t1.end (), ostream_iterator < int > (cerr, "-")) ;
#elif defined(_SGI)
copy (t1.begin (), t1.end (), ostream_iterator < int > (cerr, "-")) ;
#else
copy (t1.begin (), t1.end (), ostream_iterator < int , char > (cerr, "-")) ;
#endif
cerr << "\t" ;
#ifdef IBM_XLC
copy (t2.begin (), t2.end (), ostream_iterator < int > (cerr, "-")) ;
#elif defined(_SGI)
copy (t2.begin (), t2.end (), ostream_iterator < int > (cerr, "-")) ;
#else
copy (t2.begin (), t2.end (), ostream_iterator < int , char > (cerr, "-")) ;
#endif
cerr << endl ;
}
}
}}
} catch (Parallel :: AccessPllException) {
cerr << "**FEHLER (FATAL) Parallel :: AccessPllException entstanden in: " << __FILE__ << " " << __LINE__ << endl ;
}
return ;
}
void GitterPll :: exchangeDynamicState () {
// Die Methode wird jedesmal aufgerufen, wenn sich der dynamische
// Zustand des Gitters ge"andert hat: Verfeinerung und alle Situationen
// die einer "Anderung des statischen Zustands entsprechen. Sie wird in
// diesem Fall NACH dem Update des statischen Zustands aufgerufen, und
// kann demnach von einem korrekten statischen Zustand ausgehen. F"ur
// Methoden die noch h"aufigere Updates erfordern m"ussen diese in der
// Regel hier eingeschleift werden.
{
const int nl = mpAccess ().nlinks () ;
const int start = clock () ;
try {
vector < ObjectStream > osv (nl) ;
{
for (int l = 0 ; l < nl ; l ++)
{
LeafIteratorTT < hface_STI > w (*this,l) ;
for (w.inner ().first () ; ! w.inner ().done () ; w.inner ().next ())
{
pair < ElementPllXIF_t *, int > p = w.inner ().item ().accessInnerPllX () ;
p.first->writeDynamicState (osv [l], p.second) ;
}
for (w.outer ().first () ; ! w.outer ().done () ; w.outer ().next ())
{
pair < ElementPllXIF_t *, int > p = w.outer ().item ().accessInnerPllX () ;
p.first->writeDynamicState (osv [l], p.second) ;
}
// mark end of stream
osv [l].writeObject( MacroGridMoverIF :: ENDSTREAM );
}
}
// exchange information
osv = mpAccess ().exchange (osv) ;
{
for (int l = 0 ; l < nl ; l ++ )
{
LeafIteratorTT < hface_STI > w (*this,l) ;
for (w.outer ().first () ; ! w.outer ().done () ; w.outer ().next ())
{
pair < ElementPllXIF_t *, int > p = w.outer ().item ().accessOuterPllX () ;
p.first->readDynamicState (osv [l], p.second) ;
}
for (w.inner ().first () ; ! w.inner ().done () ; w.inner ().next ())
{
pair < ElementPllXIF_t *, int > p = w.inner ().item ().accessOuterPllX () ;
p.first->readDynamicState (osv [l], p.second) ;
}
// check consistency of stream
int endStream ;
osv [l].readObject( endStream );